×

The well-posedness of shock solutions to non-isentropic Euler-Poisson system with varying background charges. (English) Zbl 1467.35249

Summary: In this paper, the non-isentropic Euler-Poisson system with the varying background charges in flat nozzles is investigated. Under physically acceptable boundary conditions, we establish the monotonicity between shock location and the density at the exit of the nozzle. Moreover, the unique existence of the transonic shock solution is obtained.

MSC:

35Q31 Euler equations
35Q60 PDEs in connection with optics and electromagnetic theory
35Q81 PDEs in connection with semiconductor devices
35B35 Stability in context of PDEs
35L67 Shocks and singularities for hyperbolic equations
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
76H05 Transonic flows
76L05 Shock waves and blast waves in fluid mechanics
78A30 Electro- and magnetostatics
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Ascher, UM; Markowich, PA; Pietra, P.; Schmeiser, C., A phase plane analysis of transonic solutions for the hydrodynamic semiconductor model, Math. Models Methods Appl. Sci., 1, 3, 347-376 (1991) · Zbl 0800.76032 · doi:10.1142/S0218202591000174
[2] Bae, M.; Chen, GQ; Feldman, M., Regularity of solutions to regular shock reflection for potential flow, Invent. Math., 175, 3, 505-543 (2009) · Zbl 1170.35031 · doi:10.1007/s00222-008-0156-4
[3] Bae, M.; Feldman, M., Transonic shocks in multidimensional divergent nozzles, Arch. Ration. Mech. Anal., 201, 3, 777-840 (2011) · Zbl 1268.76053 · doi:10.1007/s00205-011-0424-0
[4] Bae, M.; Duan, B.; Xie, CJ, Sunsonic flow for the multidimensional Euler-Poisson system, Arch. Ration. Mech. Anal., 220, 1, 155-191 (2016) · Zbl 1339.35222 · doi:10.1007/s00205-015-0930-6
[5] Bae, M.; Duan, B.; Xie, CJ, Subsonic solutions for steady Euler-Poisson system in two-dimensional nozzles, SIAM J. Math. Anal., 46, 5, 3455-3480 (2014) · Zbl 1316.35221 · doi:10.1137/13094222X
[6] Chen, DP; Eisenberg, RS; Jerome, JW; Shu, CW, A hydrodynamic model of temperature change in open ionic channels, Biophys. J., 69, 2304-2322 (1995) · doi:10.1016/S0006-3495(95)80101-3
[7] Chen, GQ; Yuan, HR, Uniqueness of transonic shock solutions in a duct for steady potential flow, J. Differ. Equ., 247, 2, 564-573 (2009) · Zbl 1170.35103 · doi:10.1016/j.jde.2008.11.016
[8] Degond, P.; Markowich, PA, A steady state potential flow model for semiconductors, Ann. Mat. Pura Appl., 165, 87-98 (1993) · Zbl 0808.35150 · doi:10.1007/BF01765842
[9] Du, LL; Xin, ZP; Yan, W., Subsonic flows in a multi-dimensional nozzle, Arch. Rational Mech. Anal., 201, 3, 965-1012 (2011) · Zbl 1452.76200 · doi:10.1007/s00205-011-0406-2
[10] Duan, B.; Weng, SK, Transonic shock in finitely long nozzle with porous medium boundary condition, J. Differ. Equ., 251, 4-5, 1128-1156 (2011) · Zbl 1222.35140 · doi:10.1016/j.jde.2011.05.001
[11] Gamba, IM, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductors, Commun. Partial Differ. Equ., 17, 3-4, 553-577 (1992) · Zbl 0748.35049
[12] Li, J.; Xin, ZP; Yin, HC, On transonic shocks in a nozzle with variable end pressures, Commun. Math. Phys., 291, 1, 111-150 (2009) · Zbl 1187.35138 · doi:10.1007/s00220-009-0870-9
[13] Luo, T.; Xin, ZP, Transonic shock solutions for a system of Euler-Poisson equations, Commun. Math. Sci., 10, 2, 419-462 (2012) · Zbl 1286.35165 · doi:10.4310/CMS.2012.v10.n2.a1
[14] Luo, T.; Rauch, J.; Xie, CJ; Xin, ZP, Stability of transonic shock solutions for one-dimensional Euler-Poisson equations, Arch. Ration. Mech. Anal., 202, 3, 787-827 (2011) · Zbl 1261.76055 · doi:10.1007/s00205-011-0433-z
[15] Markowich, PA, On steady state Euler-Poisson models for semiconductors, Z. Angew. Math. Phys., 42, 3, 389-407 (1991) · Zbl 0755.35138 · doi:10.1007/BF00945711
[16] Wang, CP, Continuous subsonic-sonic flows in a general nozzle, J. Differ. Equ., 259, 7, 2546-2575 (2015) · Zbl 1325.35293 · doi:10.1016/j.jde.2015.03.036
[17] Wang, CP; Xin, ZP, Smooth transonic flows of Meyer type in de Laval nozzles, Arch. Ration. Mech. Anal., 232, 3, 1597-1647 (2019) · Zbl 1414.35176 · doi:10.1007/s00205-018-01350-9
[18] Wang, CP; Xin, ZP, On sonic curves of smooth subsonic-sonic and transonic flows, SIAM J. Math. Anal., 48, 4, 2414-2453 (2016) · Zbl 1410.76137 · doi:10.1137/16M1056407
[19] Xie, CJ; Xin, ZP, Existence of global steady subsonic Euler flows through infinitely long nozzles, SIAM J. Math. Anal., 42, 2, 751-784 (2010) · Zbl 1218.35170 · doi:10.1137/09076667X
[20] Xin, ZP; Yin, HC, The transonic shock in a nozzle, 2-D and 3-D complete Euler systems, J. Differ. Equ., 245, 4, 1014-1085 (2008) · Zbl 1165.35031 · doi:10.1016/j.jde.2008.04.010
[21] Xin, ZP; Yan, W.; Yin, HC, Transonic shock problem for the Euler system in a nozzle, Arch. Ration. Mech. Anal., 194, 1, 1-47 (2009) · Zbl 1423.76386 · doi:10.1007/s00205-009-0251-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.