×

Stability for a system of 2D incompressible anisotropic magnetohydrodynamic equations. (English) Zbl 1514.35358

Summary: This paper investigates the global well-posedness and the stability of perturbations near a background magnetic field on the 2D incompressible anisotropic magnetohydrodynamic equations. More precisely, we consider the system with partial mixed velocity dissipations and horizontal magnetic diffusion. Two goals are achieved. First, we obtain the global well-posedness and the \(H^2\)-stability for the nonlinear MHD equations. The approach is to apply the bootstrapping argument. Efforts are devoted to the a priori estimate of a energy functional. Second, we establish the long-time behavior of explicit decay rates of the solution in homogeneous Sobolev spaces \(\dot{H}^s\) for the linear system under the suitable assumptions for the initial data. Our work proves that any perturbations near a background magnetic field remain asymptotically stable.

MSC:

35Q35 PDEs in connection with fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
Full Text: DOI

References:

[1] Abidi, H.; Zhang, P., On the global solution of 3D MHD system with initial data near equilibrium, Commun. Pure Appl. Math., 70, 1509-1561 (2017) · Zbl 1372.35229
[2] Alemany, A.; Moreau, R.; Sulem, P-L; Frisch, U., Influence of an external magnetic field on homogeneous MHD turbulence, J. Méc., 18, 277-313 (1979)
[3] Alexakis, A., Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field, Phys. Rev. E, 84 (2011)
[4] Alfvén, H., Existence of electromagnetic-hydrodynamic waves, Nature, 150, 405-406 (1942)
[5] Bardos, C.; Sulem, C.; Sulem, PL, Longtime dynamics of a conductive fluid in the presence of a strong magnetic field, Trans. Am. Math. Soc., 305, 175-191 (1988) · Zbl 0696.35134
[6] Biskamp, D., Nonlinear Magnetohydrodynamics (1993), Cambridge: Cambridge University Press, Cambridge
[7] Boardman, N.; Lin, H.; Wu, J., Stabilization of a background magnetic field on a 2 dimensional magnetohydrodynamic flow, SIAM J. Math. Anal., 52, 5001-5035 (2020) · Zbl 1450.35210
[8] Cai, Y.; Lei, Z., Global well-posedness of the incompressible magnetohydrodynamics, Arch. Ration. Mech. Anal., 228, 969-993 (2018) · Zbl 1397.35200
[9] Cao, C.; Wu, J., Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226, 1803-1822 (2011) · Zbl 1213.35159
[10] Cao, C.; Regmi, D.; Wu, J., The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Differ. Equ., 254, 2661-2681 (2013) · Zbl 1270.35143
[11] Cao, C.; Wu, J.; Yuan, B., The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46, 588-602 (2014) · Zbl 1293.35233
[12] Dai, Y.; Tang, Z.; Wu, J., A class of global large solutions to the magnetohydrodynamic equations with fractional dissipation, Z. Angew. Math. Phys., 70, 153 (2019) · Zbl 1428.35353
[13] Davidson, PA, An Introduction to Magnetohydrodynamics (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0974.76002
[14] Deng, W.; Zhang, P., Large time behavior of solutions to 3-D MHD system with initial data near equilibrium, Arch. Ration. Mech. Anal., 230, 1017-1102 (2018) · Zbl 1414.35166
[15] Dong, B.; Jia, Y.; Li, J.; Wu, J., Global regularity and time decay for the 2D magnetohydrodynamic equations with fractional dissipation and partial magnetic diffusion, J. Math. Fluid Mech., 20, 1541-1565 (2018) · Zbl 1406.35269
[16] Dong, B.; Li, J.; Wu, J., Global regularity for the 2D MHD equations with partial hyper-resistivity, Int. Math. Res. Notices, 14, 4261-4280 (2019) · Zbl 1459.35064
[17] Du, LL; Zhou, DQ, Global well-posedness of 2D magnetohydrodynamics flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal., 47, 1562-1587 (2015) · Zbl 1323.35143
[18] Duvaut, G.; Lions, JL, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46, 241-279 (1972) · Zbl 0264.73027
[19] Fan, JS; Ozawa, T., Regularity criteria for the magnetohydrodynamic equations with partial viscous terms and the Leray-\( \alpha \)-MHD model, Kinet. Relat. Models, 2, 293-305 (2009) · Zbl 1189.35250
[20] Fan, JS; Ozawa, T., Regularity criteria for the 2D MHD system with horizontal dissipation and horizontal magnetic diffusion, Kinet. Relat. Models, 7, 45-56 (2014) · Zbl 1292.35202
[21] Feng, W.; Hafeez, F.; Wu, J., Influence of a background magnetic field on a 2D magnetohydrodynamic flow, Nonlinerity, 34, 2527-2562 (2021) · Zbl 1466.35295
[22] GÓmezab, DO; Mininnia, PD; Dmitruk, P., MHD simulations and astrophysical applications, Adv. Space Res., 35, 5, 899-907 (2005)
[23] He, L.; Xu, L.; Yu, P., On global dynamics of three dimensional magnetohydrodynamics: nonlinear stability of Alfvén waves, Ann. PDE, 4, 1-105 (2018) · Zbl 1398.35170
[24] Hu, X., Lin, F.: Global existence for two dimensional incompressible magnetohydrodynamic flows with zero magnetic diffusivity. arXiv:1405.0082v1 [math.AP] 1 May (2014)
[25] Jiu, Q.; Niu, D.; Wu, J.; Xu, X.; Yu, H., The 2D magnetohydrodynamic equations with magnetic diffusion, Nonlinearity, 28, 3935-3956 (2015) · Zbl 1328.76076
[26] Jiu, Q.; Suo, X.; Wu, J., Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation, Commun. Math. Sci., 18, 4, 987-1022 (2020) · Zbl 1464.35230
[27] Lai, S.; Wu, J.; Zhang, J., Stabilizing phenomenon for 2D anisotropic magnetohydrodynamic system near a background magnetic field, SIAM J. Math. Anal., 53, 5, 6073-6093 (2021) · Zbl 1477.35169
[28] Laudau, L.; Lifshitz, E., Electrodynamics of Continuous Media (1984), New York: Pergamon, New York
[29] Lei, Z.; Zhou, Y., BKM’s criterion and global weak solutions for magnetohydrodynamics with zero viscosity, Discrete Contin. Dyn. Syst., 25, 575-583 (2009) · Zbl 1171.35452
[30] Lin, H.; Du, L., Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions, Nonlinearity, 26, 219-239 (2013) · Zbl 1273.35076
[31] Lin, F.; Xu, L.; Zhang, P., Global small solutions to 2-D incompressible MHD system, J. Differ. Equ., 259, 5440-5485 (2015) · Zbl 1321.35138
[32] Lin, H.; Ji, R.; Wu, J.; Yan, L., Stability of perturbations near a background magnetic field of the 2D incompressible MHD equations with mixed partial dissipation, J. Funct. Anal., 279 (2020) · Zbl 1437.35581
[33] Pan, R.; Zhou, Y.; Zhu, Y., Global classical solutions of three dimensional viscous MHD system without magnetic diffusion on periodic boxes, Arch. Ration. Mech. Anal., 227, 637-662 (2018) · Zbl 1384.35100
[34] Ren, X.; Wu, J.; Xiang, Z.; Zhang, Z., Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal., 267, 503-541 (2014) · Zbl 1295.35104
[35] Ren, X.; Xiang, Z.; Zhang, Z., Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain, Nonlinearity, 29, 1257-1291 (2016) · Zbl 1341.35127
[36] Sermange, M.; Temam, R., Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 36, 635-664 (1983) · Zbl 0524.76099
[37] Tan, Z.; Wang, Y., Global well-posedness of an initial-boundary value problem for viscous non-resistive MHD systems, SIAM J. Math. Anal., 50, 1432-1470 (2018) · Zbl 1387.35470
[38] Tao, T., Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics (2006), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1106.35001
[39] Wu, J.; Wu, Y., Global small solutions to the compressible 2D magnetohydrodynamic system without magnetic diffusion, Adv. Math., 310, 759-888 (2017) · Zbl 1372.35252
[40] Wu, J.; Zhu, Y., Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium, Adv. Math., 377, 1074 (2021) · Zbl 1455.35207
[41] Wu, J.; Wu, Y.; Xu, X., Global small solution to the 2D MHD system with a velocity damping term, SIAM J. Math. Anal., 47, 2630-2656 (2015) · Zbl 1366.35145
[42] Yamazaki, K., Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation, Nonlinear Anal., 94, 194-205 (2014) · Zbl 1282.35114
[43] Yamazaki, K., On the global regularity of two-dimensional generalized magnetohydrodynamics system, J. Math. Anal. Appl., 416, 99-111 (2014) · Zbl 1300.35107
[44] Yamazaki, K., Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29, 46-51 (2014) · Zbl 1320.35298
[45] Yang, W.; Jiu, Q.; Wu, J., The 3D incompressible magnetohydrodynamic equations with fractional partial dissipation, J. Differ. Equ., 266, 630-652 (2019) · Zbl 1403.35246
[46] Yuan, B.; Zhao, J., Global regularity of 2D almost resistive MHD equations, Nonlinear Anal. Real World Appl., 41, 53-65 (2018) · Zbl 1406.35080
[47] Zhang, T., Global solutions to the 2D viscous, non-resistive MHD system with large background magnetic field, J. Differ. Equ., 260, 5450-5480 (2016) · Zbl 1333.35218
[48] Zhou, Y.; Zhu, Y., Global classical solutions of 2D MHD system with only magnetic diffusion on periodic domain, J. Math. Phys., 59 (2018) · Zbl 1395.76112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.