×

Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. (English) Zbl 1465.65116

The authors present a finite volume method for the diffusion equations that can be applied to general polyhedral meshes. It is based on the flux balanced approximation using the least-squares gradient with the distance weighted harmonic mean of piecewise continuous diffusion coefficient. The degrees of freedom are the values at the centers of the cells. The flux balanced approximation is proposed without numerically computing the gradient itself at the faces of computational cells in order to find a normal diffusive flux. It is shown that in the case of discontinuous diffusion coefficient, it is suitable to use the restricted least-squares gradient that respects the discontinuity in the approximation. The method can be used in the iterative way, where each iteration uses a matrix in the 1-ring neighborhood. Several numerical examples are presented to illustrate some advantages of the proposed method.

MSC:

65N08 Finite volume methods for boundary value problems involving PDEs
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65K10 Numerical optimization and variational techniques
65F10 Iterative numerical methods for linear systems
65Y10 Numerical algorithms for specific classes of architectures
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
35Q94 PDEs in connection with information and communication

Software:

AVL; OpenFOAM; FlowLab
Full Text: DOI

References:

[1] L. Alvarez; P.-L. Lions; J.-M. Morel, Image selective smoothing and edge detection by nonlinear diffusion. Ⅱ, SIAM J. Numer. Anal., 29, 845-866 (1992) · Zbl 0766.65117 · doi:10.1137/0729052
[2] M. Balažovjech; K. Mikula, A higher order scheme for a tangentially stabilized plane curve shortening flow with a driving force, SIAM J. Sci. Comput., 33, 2277-2294 (2011) · Zbl 1276.65048 · doi:10.1137/100795309
[3] B. Basara, Employment of the second-moment turbulence closure on arbitrary unstructured grids, Int. J. Numer. Methods Fluids, 44, 377-407 (2004) · Zbl 1085.76529 · doi:10.1002/fld.646
[4] P. Bastian, Numerical Computation of Multiphase Flows in Porous Media, Ph.D thesis, Habilitationsschrift Univeristät Kiel, 1999.
[5] J. Blazek, Computational Fluid Dynamics: Principles and Applications, Elsevier/Butterworth Heinemann, Amsterdam, 2015. · Zbl 1308.76001
[6] K. Böhmer, P. Hemker and H. J. Stetter, The defect correction approach, in Defect Correction Methods, Comput. Suppl., 5, Springer, Vienna, 1984, 1-32. · Zbl 0551.65034
[7] N. Cinosi; S. Walker; M. Bluck; R. Issa, CFD simulation of turbulent flow in a rod bundle with spacer grids (MATIS-H) using STAR-CCM+, Nuclear Engrg. Design, 279, 37-49 (2014) · doi:10.1016/j.nucengdes.2014.06.019
[8] A. de Boer; M. S. van der Schoot; H. Bijl, Mesh deformation based on radial basis function interpolation, Comput. Structures, 85, 784-795 (2007) · doi:10.1016/j.compstruc.2007.01.013
[9] I. Demirdžić, On the discretization of the diffusion term in finite-volume continuum mechanics, Numer. Heat Tr. B-Fund., 68, 1-10 (2015) · doi:10.1080/10407790.2014.985992
[10] I. Demirdžić; I. Horman; D. Martinović, Finite volume analysis of stress and deformation in hygro-thermo-elastic orthotropic body, Comp. Meth. Appl. Mech. Engrg., 190, 1221-1232 (2000) · Zbl 1009.74074 · doi:10.1016/S0045-7825(99)00476-4
[11] I. Demirdžić; S. Muzaferija, Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology, Comp. Meth. Appl. Mech. Engrg., 125, 235-255 (1995) · doi:10.1016/0045-7825(95)00800-G
[12] J. Droniou; R. Eymard; T. Gallouët; R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., 20, 265-295 (2010) · Zbl 1191.65142 · doi:10.1142/S0218202510004222
[13] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. VII, Handb. Numer. Anal., Ⅶ, North-Holland, Amsterdam, 2000,713-1020. · Zbl 0981.65095
[14] J. H. Ferziger, M. Perić and R. L. Street, Computational Methods for Fluid Dynamics, Springer, Cham, 2020. · Zbl 1452.76001
[15] A. Fluent, Release 15.0, Theory Guide, November.
[16] P. Frolkovič; M. Lampe; G. Wittum, Numerical simulation of contaminant transport in groundwater using software tools of \(r^3t\), Comput. Vis. Sci., 18, 17-29 (2016) · Zbl 1360.76007 · doi:10.1007/s00791-016-0268-0
[17] H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, Ph.D thesis, Imperial College London (University of London), 1996.
[18] H. Jasak; A. D. Gosman, Automatic resolution control for the finite volume method. Part 1, Numer. Heat Tr. B-Fund., 38, 237-256 (2000) · doi:10.1080/10407790050192753
[19] H. Jasak, A. Jemcov, Z. Tukovic et al., Openfoam: A C++ library for complex physics simulations, in International Workshop on Coupled Methods in Numerical Dynamics, 1000, IUC Dubrovnik, Croatia, 2007, 1-20.
[20] J. Jin, The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 2012.
[21] J. Kačur; K. Mikula, Solution of nonlinear diffusion appearing in image smoothing and edge detection, Appl. Numer. Math., 17, 47-59 (1995) · Zbl 0823.65089 · doi:10.1016/0168-9274(95)00008-I
[22] S. R. Mathur; J. Y. Murthy, A pressure-based method for unstructured meshes, Numer. Heat Tr. B-Fund., 31, 195-215 (1997) · doi:10.1080/10407799708915105
[23] S. Muzaferija, Adaptive Finite Volume Method for Flow Prediction Using Unstructured Meshes and Multigrid Approach, Ph.D thesis, University of London, 1994.
[24] S. Muzaferija; D. Gosman, Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology, J. Comput. Phys., 138, 766-787 (1997) · Zbl 0902.76082 · doi:10.1006/jcph.1997.5853
[25] B. Niceno, A three dimensional finite volume method for incompressible Navier-Stokes equations on unstructured staggered grids, ECCOMAS CFP, 2006.
[26] E. Sozer, C. Brehm and C. C. Kiris, Gradient calculation methods on arbitrary polyhedral unstructured meshes for cell-centered CFD solvers, 52nd Aerospace Sciences Meeting, 2014.
[27] R. Tatschl, B. Basara, J. Schneider, K. Hanjalic, M. Popovac, A. Brohmer and J. Mehring, Advanced turbulent heat transfer modeling for IC-engine applications using AVL FIRE, in Int. Multidimensional Engine Modelling, 2, User’s Group Meeting, Detroit, MI, 2006, 1-10.
[28] Y.-Y. Tsui; Y.-F. Pan, A pressure-correction method for incompressible flows using unstructured meshes, Numer. Heat Tr. B-Fund., 49, 43-65 (2006) · doi:10.1080/10407790500344084
[29] J. Tu, G.-H. Yeoh and C. Liu, Computational Fluid Dynamics: A Practical Approach, Elsevier/Butterworth Heinemann, Amsterdam, 2013. · Zbl 1260.76001
[30] L. White, R. Panchadhara and D. Trenev, Flow simulation in heterogeneous porous media with the moving least-squares method, SIAM J. Sci. Comput., 39 (2017), B323-B351. · Zbl 1362.76036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.