×

Operations that preserve integrability, and truncated Riesz spaces. (English) Zbl 1484.46006

Summary: For any real number \(p\in[1,+\infty)\), we characterise the operations \(\mathbb{R}^I\to\mathbb{R}\) that preserve \(p\)-integrability, i.e., the operations under which, for every measure \(\mu \), the set \(\mathcal{L}^p(\mu)\) is closed. We investigate the infinitary variety of algebras whose operations are exactly such functions. It turns out that this variety coincides with the category of Dedekind \(\sigma \)-complete truncated Riesz spaces, where truncation is meant in the sense of R. N. Ball. We also prove that \(\mathbb{R}\) generates this variety. From this, we exhibit a concrete model of the free Dedekind \(\sigma \)-complete truncated Riesz spaces. Analogous results are obtained for operations that preserve \(p\)-integrability over finite measure spaces: the corresponding variety is shown to coincide with the much studied category of Dedekind \(\sigma \)-complete Riesz spaces with weak unit, \( \mathbb{R}\) is proved to generate this variety, and a concrete model of the free Dedekind \(\sigma \)-complete Riesz spaces with weak unit is exhibited.

MSC:

46A40 Ordered topological linear spaces, vector lattices
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
08A65 Infinitary algebras
08B20 Free algebras
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)

References:

[1] M. Abbadini, Dedekind σ-complete \(\ell \)-groups and Riesz spaces as varieties, Positivity (2019), 10.1007/s11117-019-00718-9. · Zbl 1484.06059 · doi:10.1007/s11117-019-00718-9
[2] R. N. Ball, Truncated abelian lattice-ordered groups I: The pointed (Yosida) representation, Topology Appl. 162 (2014), 43-65. · Zbl 1301.06039
[3] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math. 608, Springer, Berlin, 1977. · Zbl 0384.06022
[4] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Grad. Texts in Math. 78, Springer, New York, 1981. · Zbl 0478.08001
[5] G. Buskes, B. de Pagter and A. van Rooij, The Loomis-Sikorski theorem revisited, Algebra Universalis 58 (2008), no. 4, 413-426. · Zbl 1158.06006
[6] G. Buskes and A. van Rooij, Small Riesz spaces, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 3, 523-536. · Zbl 0683.46013
[7] G. Buskes and A. Van Rooij, Representation of Riesz spaces without the Axiom of Choice, Nepali Math. Sci. Rep. 16 (1997), no. 1-2, 19-22. · Zbl 1061.46500
[8] G. B. Folland, Real Analysis, 2nd ed., Pure Appl. Math. (New York), John Wiley & Sons, New York, 1999. · Zbl 0924.28001
[9] D. H. Fremlin, Measure Theory. Vol. 2, Torres Fremlin, Colchester, 2003. · Zbl 1165.28001
[10] O. Kallenberg, Foundations of Modern Probability, Probab. Appl. (N. Y.), Springer, New York, 1997. · Zbl 0892.60001
[11] M. A. Lepellere and A. Valente, Embedding of Archimedean l-groups in Riesz spaces, Atti Semin. Mat. Fis. Univ. Modena 46 (1998), no. 1, 249-254. · Zbl 0929.46009
[12] W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces. Vol. I, North-Holland, Amsterdam, 1971. · Zbl 0231.46014
[13] D. Mundici, Tensor products and the Loomis-Sikorski theorem for MV-algebras, Adv. in Appl. Math. 22 (1999), no. 2, 227-248. · Zbl 0926.06004
[14] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987. · Zbl 0925.00005
[15] E. Schechter, Handbook of Analysis and its Foundations, Academic Press, San Diego, 1999. · Zbl 0952.26001
[16] J. Słomiński, The theory of abstract algebras with infinitary operations, Instytut Matematyczny Polskiej Akademi Nauk, Wrosław, 1959. · Zbl 0178.34104
[17] S. M. Srivastava, A Course on Borel Sets, Grad. Texts in Math. 180, Springer, New York, 1998. · Zbl 0903.28001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.