×

Towards an \(L^p\) potential theory for sub-Markovian semigroups: kernels and capacities. (English) Zbl 1104.31007

The authors study nonlinear potential theory of an \(L^p\) sub-Markovian semigroup \((T_t:\, t\geq 0)\) on a general measure space \((X,\mu)\). The first question they address is a kernel representation of the semigroup in the form \(T_t u(x)=\int_X u(y)p_t(x,y)\mu(dy)\), and various properties of densities \(p_t(x,y)\). Since the semigroup is not assumed symmetric, it is sometimes necessary to require that the dual semigroup be sub-Markovian. A criterion for this to be true is given. By use of the kernel representation for the semigroup and its \(\Gamma\)-transform \(V_ru:=(1/\Gamma(r/2))\int_0^{\infty} t^{r/2-1}e^{-t} T_tu\, dt\), \(r>0\), \(u\in L^p\), the authors introduce nonlinear potentials, \((r,p)\)-mutual energies and \((r,p)\)-potentials of measures. Several \((r,p)\)-capacities are defined, their (dual) representations given, and properties of equilibrium potentials discussed. Examples are given in the case of \({\mathbb R}^n\) where abstract Bessel potential spaces may be identified with concrete function spaces.

MSC:

31C45 Other generalizations (nonlinear potential theory, etc.)
47D07 Markov semigroups and applications to diffusion processes
31C15 Potentials and capacities on other spaces
31C25 Dirichlet forms
35S05 Pseudodifferential operators as generalizations of partial differential operators
47B65 Positive linear operators and order-bounded operators
47B34 Kernel operators
60J35 Transition functions, generators and resolvents
Full Text: DOI

References:

[1] Hoh, W., Jacob, N.: Towards an L p potential theory for sub–Markovian semigroups: variational inequalities and balayage theory. J. Evol. Equ., 4, 297–312 (2004) · Zbl 1055.31006 · doi:10.1007/s00028-003-0145-4
[2] Malliavin, P.: Implicit functions in finite corank on the Wiener space, Itô, K. (ed.): Proceedings Taniguchi Symp. Stoch. Anal. Katata and Kyoto 1982, Math. Libr. 32, North–Holland, Amsterdam, 369–386, 1984 · Zbl 0546.60003
[3] Fukushima, M.: Two topics related to Dirichlet forms: quasi–everywhere convergence and additive functionals, Dell’Antonio, G., Mosco, U. (eds.): Dirichlet Forms, Lect. Notes Math. 1563, Springer, Berlin, 21–53, 1993 · Zbl 0810.47035
[4] Fukushima, M., Kaneko, H.: On (r, p)–capacities for general Markovian semigroups, Albeverio, S. (ed.): Infinite dimensional analysis and stochastic processes, Res. Notes Math. 124, Pitman, Boston (MA), 41–47, 1985 · Zbl 0573.60069
[5] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, Stud. Math. 19, de Gruyter, Berlin, 1994 · Zbl 0838.31001
[6] Kazumi, T., Shigekawa, I.: Measures of finite (r, p)–energy and potentials on a separable metric space, Azéma, J., Meyer, P.A., Yor, M. (eds.): Séminaire de Probabilités XXVI, Lect. Notes Math. 1526, Springer, Berlin, 415–444, 1992 · Zbl 0769.60069
[7] Maz’ya, V. G., Havin, V. P.: Nonlinear potential theory. Russ. Math. Surv., 27, 71–148 (1972) · Zbl 0269.31004 · doi:10.1070/RM1972v027n06ABEH001393
[8] Maz’ja (Maz’ya), V. G., Sobolev Spaces, Series in Soviet Math., Springer, Berlin, 1985
[9] Mizuta, Y.: Potential theory in Euclidean spaces, GAKUTO Int. Ser., Math. Sci. Appl. 6, Gakkōtosho, Tokyo, 1996 · Zbl 0938.76539
[10] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory, Grundlehren Math. Wiss. 314, Springer, Berlin 1999 (corr. 2nd printing) · Zbl 0834.46021
[11] Rao, M., Vondraček, Z.: Nonlinear Potentials in Function Spaces. Nagoya Math. J., 165, 91–116 (2002) · Zbl 1027.31009
[12] Jacob, N.: Pseudo Differential Operators and Markov Processes. Vol. 3, Markov Processes and Applications, Imperial College Press, London, 2005 · Zbl 1076.60003
[13] Farkas, W., Jacob, N., Schilling, R. L.: Function spaces related to continuous negative definite functions: {\(\psi\)}–Bessel potential spaces. Diss. Math., CCCXCIII, 1–62 (2001) · Zbl 0990.46018
[14] Schilling, R. L.: Dirichlet operators and the positive maximum principle. Integral Equations Oper. Theory, 41, 74–92 (2001) · Zbl 0994.31003 · doi:10.1007/BF01202532
[15] Jacob, N.: Pseudo–differential operators and Markov processes, Math. Res. 94, Akademie–Verlag, Berlin, 1996 · Zbl 0860.60002
[16] Jacob, N.: Pseudo Differential Operators and Markov Processes, Vol. 2: Generators and their Potential Theory, Imperial College Press, London, 2002 · Zbl 1005.60004
[17] Jacob, N., Schilling, R. L.: Lévy–type processes and pseudo–differential operators, Barndorff–Nielsen, O. E., et al. (eds.) Lévy processes: Theory and Applications, Birkhäuser, Boston, 139–168, 2001 · Zbl 0984.60054
[18] Farkas, W., Jacob, N., Schilling, R. L.: Feller semigroups, L p –sub–Markovian semigroups, and applications to pseudo–differential operators with negative definite symbols. Forum Math., 13, 51–90 (2001) · Zbl 0978.47031 · doi:10.1515/FORM.2001.51
[19] Dunford, N., Pettis, B. J.: Linear operators on summable functions. Trans. Am. Math. Soc., 47, 323–349 (1940) · Zbl 0023.32902 · doi:10.1090/S0002-9947-1940-0002020-4
[20] Robinson, D. W.: Elliptic operators and Lie groups, Oxf. Math. Monogr., Clarendon Press, Oxford, 1991 · Zbl 0747.47030
[21] Schaefer, H. H.: Banach lattices and positive operators, Grundlehren Math. Wiss. 215, Springer, Berlin, 1974 · Zbl 0296.47023
[22] Nagel, R. (ed.): One–parameter Semigroups of Positive Operators, Lect. Notes Math. 1184, Springer, Berlin, 1986 · Zbl 0585.47030
[23] Bukhvalov, A. V.: Integral representations of linear operators. J. Soviet Math., 9, 129–137 (1978) · Zbl 0397.47017 · doi:10.1007/BF01578539
[24] Bukhvalov, A. V.: Application of methods of the theory of order–bounded operators to the theory of operators in L p –spaces. Russ. Math. Surv., 38, 43–98 (1983) · Zbl 0542.47026 · doi:10.1070/RM1983v038n06ABEH003451
[25] Arendt, W., Bukhvalov, A. V.: Integral representations of resolvents and semigroups. Forum Math., 6, 111–135 (1994) · Zbl 0803.47046 · doi:10.1515/form.1994.6.111
[26] Doob, J. L.: One–parameter families of transformations. Duke Math. J., 4, 752–774 (1938) · JFM 64.0192.04 · doi:10.1215/S0012-7094-38-00466-1
[27] Revuz, D.: Markov Chains (revised ed.), Elsevier, North–Holland Math. Libr., 11, Amsterdam, 1984 · Zbl 0539.60073
[28] Jörgens, K.: Linear Integral Operators, Surv. Ref. Works Math., Pitman, Boston, 1982 · Zbl 0499.47029
[29] Zaanen, A. C.: Linear Analysis, North Holland, Amsterdam, 1953 · Zbl 0053.25601
[30] Blumenthal, R. M., Getoor, R. K.: Markov Processes and Potential Theory, Pure Appl. Math. 29, Academic Press, New York, 1968 · Zbl 0169.49204
[31] Schilling, R. L.: Subordination in the sense of Bochner and a related functional calculus. J. Aust. Math. Soc. Ser. A, 64, 368–396 (1998) · Zbl 0920.47039 · doi:10.1017/S1446788700039239
[32] Jacob, N.: Pseudo Differential Operators and Markov Processes, Vol. 1: Fourier Analysis and Semigroups, Imperial College Press, London, 2001 · Zbl 0987.60003
[33] Kaneko, H.: On (r, p)–capacities for Markov processes. Osaka J. Math., 23, 325–336 (1986) · Zbl 0633.60090
[34] Ouhabaz, E. M.: Propriétés d’ordre et de contractivité des semi–groupes avec applications aux opérateurs elliptiques, Thèse de l’Université de Franche–Comté, Besan\c{}con, 1992
[35] Ma, Z. M., Overbeck, L., Röckner, M.: Markov processes associated with semi–Dirichlet forms. Osaka J. Math., 32, 97–119 (1995) · Zbl 0834.60086
[36] Dellacherie, C., Meyer, P. A.: Probabilités et potentiel: chapitres I à IV, Hermann, Publ. Inst. Math. Univ. Strasbourg t., XV, Paris, 1975 · Zbl 0323.60039
[37] Malliavin, P.: Stochastic Analysis, Grundlehren Math. Wiss. Bd., 313, Springer, Berlin, 1997 · Zbl 0878.60001
[38] Triebel, H.: Truncation of functions. Forum Math., 12, 731–756 (2000) · Zbl 0957.46029 · doi:10.1515/form.2000.026
[39] Hirsch, F.: Lipschitz functions and fractional Sobolev spaces. Potential Anal., 11, 415–429 (1999) · Zbl 0944.46028 · doi:10.1023/A:1008612206076
[40] Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups, Ergeb. Math. Grenzgeb. 87, Springer, Berlin, 1975 · Zbl 0308.31001
[41] Berg, C., Forst, G.: Non–symmetric translation invariant Dirichlet forms. Invent. Math., 21, 199–212 (1973) · Zbl 0263.31010 · doi:10.1007/BF01390196
[42] Hoh, W.: A symbolic calculus for pseudo differential operators generating Feller semigroups. Osaka J. Math., 35, 798–820 (1998) · Zbl 0922.47045
[43] Bakry, D.: Transformations de Riesz pour les semi–groupes symétriques. Seconde partie: Etudes sous la condition {\(\Gamma\)}20, Azéma, J., Yor, M. (eds.): Sém. Probab. XIX, Lect. Notes Math. 1123, Springer Berlin, 145–174, 1985
[44] Triebel, H.: Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983 · Zbl 0546.46028
[45] Triebel, H.: Theory of Function Spaces II, Monogr. Math. 84, Birkhäuser, Basel, 1992 · Zbl 0763.46025
[46] Choquet, G.: Lectures on Analysis, Volume 1: Integration and Topological Vector Spaces, W. A. Benjamin, New York, 1969 · Zbl 0181.39602
[47] Dunford, N., Schwartz, J. T.: Linear Operators I, Pure Appl. Math. 7, Interscience, New York, 1957
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.