×

FIRE 6.5: Feynman integral reduction with new simplification library. (English) Zbl 07867597

Summary: FIRE is a program which performs integration-by-parts (IBP) reductions of Feynman integrals. Originally, the C++ version of FIRE relies on the computer algebra system Fermat by Robert Lewis to simplify rational functions. We present an upgrade of FIRE which incorporates a new library FUEL initially described in a separate publication, which enables a flexible choice of third-party computer algebra systems as simplifiers, as well as efficient communications with some of the simplifiers as C++ libraries rather than through Unix pipes. We achieve significant speedups for IBP reductions of Feynman integrals involving many kinematic variables, when using an open source backend based on FLINT newly added in this work, or the Symbolica backend developed by Ben Ruijl as a potential successor of FORM.

MSC:

68-XX Computer science
65-XX Numerical analysis

References:

[1] Chetyrkin, K. G.; Tkachov, F. V., Integration by parts: the algorithm to calculate beta functions in 4 loops, Nucl. Phys. B, 192, 159-204, 1981
[2] Tkachov, F. V., A theorem on analytical calculability of 4-loop renormalization group functions, Phys. Lett. B, 100, 65-68, 1981
[3] Gehrmann, T.; Remiddi, E., Differential equations for two loop four point functions, Nucl. Phys. B, 580, 485-518, 2000 · Zbl 1071.81089
[4] Laporta, S., High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A, 15, 5087-5159, 2000 · Zbl 0973.81082
[5] Anastasiou, C.; Lazopoulos, A., Automatic integral reduction for higher order perturbative calculations, J. High Energy Phys., 07, Article 046 pp., 2004
[6] Studerus, C., Reduze-Feynman integral reduction in C++, Comput. Phys. Commun., 181, 1293-1300, 2010 · Zbl 1219.81133
[7] von Manteuffel, A.; Studerus, C., Reduze 2 - distributed Feynman integral reduction, 2012
[8] Lee, R. N., LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser., 523, Article 012059 pp., 2014
[9] Smirnov, A. V., Algorithm FIRE - Feynman Integral REduction, J. High Energy Phys., 10, Article 107 pp., 2008 · Zbl 1245.81033
[10] Smirnov, A. V.; Smirnov, V. A., FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun., 184, 2820-2827, 2013 · Zbl 1344.81031
[11] Smirnov, A. V., FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun., 189, 182-191, 2015 · Zbl 1344.81030
[12] Smirnov, A. V.; Chuharev, F. S., FIRE6: Feynman Integral REduction with modular arithmetic, Comput. Phys. Commun., 247, Article 106877 pp., 2020 · Zbl 1510.81007
[13] Maierhöfer, P.; Usovitsch, J.; Uwer, P., Kira—a Feynman integral reduction program, Comput. Phys. Commun., 230, 99-112, 2018 · Zbl 1498.81004
[14] Maierhöfer, P.; Usovitsch, J., Kira 1.2, 2018, Release Notes
[15] Klappert, J.; Lange, F.; Maierhöfer, P.; Usovitsch, J., Integral reduction with Kira 2.0 and finite field methods, Comput. Phys. Commun., 266, Article 108024 pp., 2021 · Zbl 1523.81078
[16] Lee, R. N., Presenting LiteRed: a tool for the Loop InTEgrals REDuction, 2012
[17] Tarasov, O. V., Computation of Grobner bases for two loop propagator type integrals, Nucl. Instrum. Methods, 534, 293-298, 2004
[18] Gerdt, V. P.; Robertz, D., A Maple package for computing Grobner bases for linear recurrence relations, Nucl. Instrum. Methods A, 559, 215-219, 2006
[19] Smirnov, A. V.; Smirnov, V. A., Applying Grobner bases to solve reduction problems for Feynman integrals, J. High Energy Phys., 01, Article 001 pp., 2006
[20] Smirnov, A. V., An algorithm to construct Grobner bases for solving integration by parts relations, J. High Energy Phys., 04, Article 026 pp., 2006
[21] Smirnov, A. V.; Smirnov, V. A., S-bases as a tool to solve reduction problems for Feynman integrals, Nucl. Phys. B, Proc. Suppl., 160, 80-84, 2006
[22] Lee, R. N., Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, J. High Energy Phys., 07, Article 031 pp., 2008
[23] Barakat, M.; Brüser, R.; Fieker, C.; Huber, T.; Piclum, J., Feynman integral reduction using Gröbner bases, J. High Energy Phys., 05, Article 168 pp., 2023 · Zbl 07701983
[24] Gluza, J.; Kajda, K.; Kosower, D. A., Towards a basis for planar two-loop integrals, Phys. Rev. D, 83, Article 045012 pp., 2011
[25] Schabinger, R. M., A new algorithm for the generation of unitarity-compatible integration by parts relations, J. High Energy Phys., 01, Article 077 pp., 2012 · Zbl 1306.81359
[26] Ita, H., Two-loop integrand decomposition into master integrals and surface terms, Phys. Rev. D, 94, Article 116015 pp., 2016
[27] Larsen, K. J.; Zhang, Y., Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D, 93, Article 041701 pp., 2016
[28] Abreu, S.; Febres Cordero, F.; Ita, H.; Jaquier, M.; Page, B.; Zeng, M., Two-loop four-gluon amplitudes from numerical unitarity, Phys. Rev. Lett., 119, Article 142001 pp., 2017
[29] Abreu, S.; Febres Cordero, F.; Ita, H.; Page, B.; Zeng, M., Planar two-loop five-gluon amplitudes from numerical unitarity, Phys. Rev. D, 97, Article 116014 pp., 2018
[30] Böhm, J.; Georgoudis, A.; Larsen, K. J.; Schönemann, H.; Zhang, Y., Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, J. High Energy Phys., 09, Article 024 pp., 2018 · Zbl 1398.81264
[31] Bendle, D.; Böhm, J.; Decker, W.; Georgoudis, A.; Pfreundt, F.-J.; Rahn, M.; Wasser, P.; Zhang, Y., Integration-by-parts reductions of Feynman integrals using singular and GPI-space, J. High Energy Phys., 02, Article 079 pp., 2020 · Zbl 1435.81076
[32] Wu, Z.; Boehm, J.; Ma, R.; Xu, H.; Zhang, Y., NeatIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals, 2023
[33] Liu, X.; Ma, Y.-Q., Determining arbitrary Feynman integrals by vacuum integrals, Phys. Rev. D, 99, Article 071501 pp., 2019
[34] Guan, X.; Liu, X.; Ma, Y.-Q., Complete reduction of integrals in two-loop five-light-parton scattering amplitudes, Chin. Phys. C, 44, Article 093106 pp., 2020
[35] Bauer, C. W.; Frink, A.; Kreckel, R., Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput., 33, 1-12, 2002 · Zbl 1017.68163
[36] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H., Singular 4-1-1 — a computer algebra system for polynomial computations, 2018
[37] Mokrov, K.; Smirnov, A.; Zeng, M., Rational function simplification for integration-by-parts reduction and beyond, 2023
[38] Lewis, R. H., Fermat: A Computer Algebra System for Polynomial and Matrix Computation, 2023
[39] FLINT: Fast Library for Number Theory, 2023. Version 2.9.0, 2023
[40] Ruijl, B., Symbolica, 2023
[41] Belitsky, A. V.; Smirnov, A. V.; Yakovlev, R. V., Balancing act: multivariate rational reconstruction for IBP, Nucl. Phys. B, 993, Article 116253 pp., 2023 · Zbl 1529.81068
[42] Smirnov, A. V.; Smirnov, V. A., How to choose master integrals, Nucl. Phys. B, 960, Article 115213 pp., 2020 · Zbl 1472.81102
[43] Usovitsch, J., Factorization of denominators in integration-by-parts reductions, 2020
[44] von Manteuffel, A.; Schabinger, R. M., A novel approach to integration by parts reduction, Phys. Lett. B, 744, 101-104, 2015 · Zbl 1330.81151
[45] Peraro, T., Scattering amplitudes over finite fields and multivariate functional reconstruction, J. High Energy Phys., 12, Article 030 pp., 2016 · Zbl 1390.81631
[46] Klappert, J.; Lange, F., Reconstructing rational functions with FireFly, Comput. Phys. Commun., 247, Article 106951 pp., 2020 · Zbl 1509.68342
[47] Peraro, T., FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs, J. High Energy Phys., 07, Article 031 pp., 2019
[48] Laurentis, G.; Maître, D., Extracting analytical one-loop amplitudes from numerical evaluations, J. High Energy Phys., 07, Article 123 pp., 2019 · Zbl 1418.81089
[49] De Laurentis, G.; Page, B., Ansätze for scattering amplitudes from p-adic numbers and algebraic geometry, J. High Energy Phys., 12, Article 140 pp., 2022 · Zbl 1536.81130
[50] Magerya, V., Rational tracer: a tool for faster rational function reconstruction, 2022
[51] Abreu, S.; Dormans, J.; Febres Cordero, F.; Ita, H.; Page, B.; Sotnikov, V., Analytic form of the planar two-loop five-parton scattering amplitudes in QCD, J. High Energy Phys., 05, Article 084 pp., 2019 · Zbl 1416.81202
[52] Heller, M.; von Manteuffel, A., MultivariateApart: generalized partial fractions, Comput. Phys. Commun., 271, Article 108174 pp., 2022 · Zbl 1524.26024
[53] Fieker, C.; Hart, W.; Hofmann, T.; Johansson, F., Nemo/Hecke: computer algebra and number theory packages for the Julia programming language, (Proceedings of the 2017 Acm on International Symposium on Symbolic and Algebraic Computation, 2017), 157-164 · Zbl 1457.68325
[54] Johansson, F., Calcium, 2023
[55] Ruijl, B.; Ueda, T.; Vermaseren, J., FORM version 4.2, 2017
[56] Bern, Z.; Herrmann, E.; Roiban, R.; Ruf, M. S.; Smirnov, A. V.; Smirnov, V. A.; Zeng, M., Conservative binary dynamics at order \(O( \alpha^5)\) in electrodynamics, 2023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.