×

A Möbius identity arising from modularity in a matroid bilinear form. (English) Zbl 0966.05014

Summary: The matrix for the bilinear form of the flag space of a matroid has (with respect to an appropriate basis) a tensor product structure when the matroid has a modular flat \(K\). When determinants are taken, an identity is obtained for the rho function (a certain product of the Möbius and beta functions) summed over flats with a fixed intersection with \(K\). When the identity is interpreted for Dowling lattices and finite projective spaces, identities with similar combinatorial proofs are obtained for binomial and Gaussian coefficients, respectively.

MSC:

05B35 Combinatorial aspects of matroids and geometric lattices
52B40 Matroids in convex geometry (realizations in the context of convex polytopes, convexity in combinatorial structures, etc.)
06C10 Semimodular lattices, geometric lattices
05A30 \(q\)-calculus and related topics
Full Text: DOI

References:

[1] Bjorner, A., On the homology of geometric lattices, Algebra Universalis, 14, 107-182 (1982) · Zbl 0484.06014
[2] Bjorner, A.; Ziegler, G., Broken circuit complexes: Factorizations and generalizations, J. Combin. Theory Ser. B., 51, 96-126 (1991) · Zbl 0753.05019
[3] Brylawski, T., Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc., 203, 1-44 (1975) · Zbl 0299.05023
[4] Brylawski, T., The broken-circuit complex, Trans. Amer. Math. Soc., 234, 417-433 (1977) · Zbl 0368.05022
[5] Brylawski, T.; Oxley, J., The broken-circuit complex: Its structure and factorizations, European J. Combin., 2, 107-121 (1981) · Zbl 0466.05027
[6] Brylawski, T.; Oxley, J., The Tutte polynomial and its applications, Matroid Theory, Vol. III (1993), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, p. 123-225 · Zbl 0769.05026
[7] Brylawski, T.; Varchenko, A., The determinant formula for a matroid bilinear form, Adv. in Math., 129, 1-24 (1997) · Zbl 0918.05038
[8] Crapo, H., A higher invariant for matroids, J. Combin. Theory, 2, 406-417 (1967) · Zbl 0168.26203
[9] Crapo, H., The Möbius function of a lattice, J. Combin. Theory, 1, 126-131 (1966) · Zbl 0146.01601
[10] H. Crapo, and, G.-C. Rota, Combinatorial Geometries, MIT Press, Cambridge, MA, 1970.; H. Crapo, and, G.-C. Rota, Combinatorial Geometries, MIT Press, Cambridge, MA, 1970. · Zbl 0216.02101
[11] Dowling, T., A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B, 14, 61-86 (1973) · Zbl 0247.05019
[12] Goldman, J.; Rota, G.-C., On the foundations of combinatorial theory. IV. Finite vector spaces and Eulerian generating functions, Stud. Appl. Math., 49, 239-258 (1970) · Zbl 0212.03303
[13] Greene, C.; Zaslavsky, T., On the interpretation of Whitney numbers through arrangements of hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs, Trans. Amer. Math. Soc., 280, 97-128 (1983) · Zbl 0539.05024
[14] van Lint, J. H.; Wilson, R. M., A Course in Combinatorics (1992), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0769.05001
[15] Rota, G.-C., On the foundations of combinatorial theory, I, Zeit. J. Wahrsch., 2, 340-368 (1966) · Zbl 0121.02406
[16] Schechtman, V.; Varchenko, A., Arrangements of hyperplanes and Lie algebra homology, Invent. Math., 106, 139-194 (1991) · Zbl 0754.17024
[17] Stanley, R., Modular elements of geometric lattices, Algebra Universalis, 1, 214-217 (1971) · Zbl 0229.05032
[18] Varchenko, A., The Euler beta-function, the Vandermonde determinant, Legendre’s equation, and the critical values of linear functions on a configuration of hyper- planes, I, Math. USSR Izvestia, 35, 543-577 (1990) · Zbl 0709.33001
[19] Weisner, L., Abstract theory of inversion of finite series, Trans. Amer. Math. Soc., 38, 474-484 (1935) · JFM 61.1027.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.