×

A perspective on non-commutative frame theory. (English) Zbl 1423.06041

Summary: This paper extends the fundamental results of frame theory to a non-commutative setting where the role of locales is taken over by étale localic categories. This involves ideas from quantale theory and from semigroup theory, specifically Ehresmann semigroups, restriction semigroups and inverse semigroups. We prove several main results. To start with, we establish a duality between the category of complete restriction monoids and the category of étale localic categories. The relationship between monoids and categories is mediated by a class of quantales called restriction quantal frames. This result builds on the work of P. Resende [Adv. Math. 208, No. 1, 147–209 (2007; Zbl 1116.06014)] on the connection between pseudogroups and étale localic groupoids but in the process we both generalize and simplify: for example, we do not require involutions and, in addition, we render his result functorial. A wider class of quantales, called multiplicative Ehresmann quantal frames, is put into a correspondence with those localic categories where the multiplication structure map is semiopen, and all the other structure maps are open. We also project down to topological spaces and, as a result, extend the classical adjunction between locales and topological spaces to an adjunction between étale localic categories and étale topological categories. In fact, varying morphisms, we obtain several adjunctions. Just as in the commutative case, we restrict these adjunctions to spatial-sober and coherent-spectral equivalences. The classical equivalence between coherent frames and distributive lattices is extended to an equivalence between coherent complete restriction monoids and distributive restriction semigroups. Consequently, we deduce several dualities between distributive restriction semigroups and spectral étale topological categories. We also specialize these dualities for the setting where the topological categories are cancellative or are groupoids. Our approach thus links, unifies and extends the approaches taken in the work by the second author and D. H. Lenz [Adv. Math. 244, 117–170 (2013; Zbl 1311.20059); “Distributive inverse semigroups and non-commutative Stone dualities”, Preprint, arXiv:1302.3032] and by Resende [loc. cit.].

MSC:

06D22 Frames, locales
06F07 Quantales
06E15 Stone spaces (Boolean spaces) and related structures
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
20M18 Inverse semigroups
22A22 Topological groupoids (including differentiable and Lie groupoids)

References:

[1] Borceux, F., Handbook of Categoical Algebra, vol. 3 (1994), CUP · Zbl 0843.18001
[2] Cockett, J. R.B.; Guo, X.; Hofstra, P., Range categories I: general theory, Theory Appl. Categ., 24, 413-452 (2012) · Zbl 1252.18003
[3] Cockett, J. R.B.; Lack, S., Restriction categories I: categories of partial maps, Theoret. Comput. Sci., 270, 223-259 (2002) · Zbl 0988.18003
[4] Ehresmann, Ch., Oeuvres complètes et commentées, (Ehresmann, A. C., Cahiers de topologie et géométrie différentielle. Cahiers de topologie et géométrie différentielle, Amiens (1980-1983)) · Zbl 0452.01017
[5] Exel, R., Inverse semigroups and combinatorial \(C^\ast \)-algebras, Bull. Braz. Math. Soc. (N.S.), 39, 2, 191-313 (2008) · Zbl 1173.46035
[6] Exel, R., Tight representations of semilattices and inverse semigroups, Semigroup Forum, 79, 159-182 (2009) · Zbl 1203.20061
[7] Ganyushkin, O.; Mazorchuk, V., Classical Finite Transformation Semigroups, Algebr. Appl., vol. 9 (2009), Springer-Verlag · Zbl 1166.20056
[8] Gould, V.; Hollings, C., Restriction semigroups and inductive constellations, Comm. Algebra, 38, 261-287 (2010) · Zbl 1251.20062
[9] Grandis, M., Cohesive categories and manifolds, Ann. Mat. Pura Appl., CLVII, 199-244 (1990) · Zbl 0739.18004
[10] Grandis, M., Cohesive categories and manifolds—Errata corrige, Ann. Mat. Pura Appl., CLXXIX, 471-472 (2001)
[11] Hollings, Ch., From right PP monoids to restriction semigroups: a survey, Eur. J. Pure Appl. Math., 2, 21-57 (2009) · Zbl 1214.20056
[12] Howie, J. M., Fundamentals of Semigroup Theory (1995), Oxford Univ. Press · Zbl 0835.20077
[13] Johnstone, P. T., Stone Spaces (1986), CUP · Zbl 0586.54001
[14] Johnstone, P. T., Sketches of an Elephant — A Topos Theory Compendium, vol. 2 (2002), Oxford Univ. Press · Zbl 1071.18002
[15] Kellendonk, J., The local structure of tilings and their integer group of coinvariants, Comm. Math. Phys., 187, 115-157 (1997) · Zbl 0887.52013
[16] Kellendonk, J., Topological equivalence of tilings, J. Math. Phys., 38, 1823-1842 (1997) · Zbl 0881.52014
[17] Kudryavtseva, G.; Mazorchuk, V., On multisemigroups, Port. Math., 72, 1, 47-80 (2015) · Zbl 1333.20070
[18] Lawson, M. V., Semigroups and ordered categories I: the reduced case, J. Algebra, 141, 422-462 (1991) · Zbl 0747.18007
[19] Lawson, M. V., Inverse Semigroups: the Theory of Partial Symmetries (1998), World Scientific Publishing Co. Inc. · Zbl 1079.20505
[20] Lawson, M. V., The polycyclic monoids \(P_n\) and the Thompson groups \(V_{n, 1}\), Comm. Algebra, 35, 4068-4087 (2007) · Zbl 1144.20040
[21] Lawson, M. V., A non-commutative generalization of Stone duality, J. Aust. Math. Soc., 88, 385-404 (2010) · Zbl 1209.20062
[22] Lawson, M. V.; Lenz, D. H., Pseudogroups and their etale groupoids, Adv. Math., 244, 117-170 (2013) · Zbl 1311.20059
[23] Lawson, M. V.; Lenz, D. H., Distributive inverse semigroups and non-commutative Stone dualities, preprint
[24] Lawson, M. V.; Margolis, S.; Steinberg, B., The étale groupoid of an inverse semigroup as a groupoid of filters, J. Aust. Math. Soc., 94, 234-256 (2013) · Zbl 1297.20067
[25] Lenz, D. H., On an order-based construction of a topological groupoid from an inverse semigroup, Proc. Edinb. Math. Soc., 51, 387-406 (2008) · Zbl 1153.22003
[26] Mac Lane, S., Categories for the Working Mathematician, Grad. Texts in Math., vol. 5 (1971), Springer-Verlag · Zbl 0232.18001
[27] Mac Lane, S.; Moerdijk, I., Sheaves in Geometry and Logic. A First Introduction to Topos Theory (1994), Springer-Verlag
[28] Mulvey, C. J., &, Suppl. Rend. Circ. Mat. Palermo Ser. II, 12, 99-104 (1986) · Zbl 0633.46065
[29] Paterson, A. T., Groupoids, Inverse Semigroups, and Their Operator Algebras, Progr. Math., vol. 170 (1999), Birkhäuser: Birkhäuser Boston · Zbl 0913.22001
[30] Renault, J., A Groupoid Approach to \(C^\ast \)-Algebras, Lecture Notes in Math., vol. 793 (1980), Springer · Zbl 0433.46049
[31] Resende, P., Etale groupoids and their quantales, Adv. Math., 208, 147-209 (2007) · Zbl 1116.06014
[32] Resende, P.; Rodrigues, E., Sheaves as modules, Appl. Categ. Structures, 18, 199-217 (2010) · Zbl 1200.18008
[33] Rosenthal, K., Quantales and Their Applications (1990), Longman Scientific & Technical · Zbl 0703.06007
[34] Steinberg, B., A groupoid approach to discrete inverse semigroup algebras, Adv. Math., 223, 689-727 (2010) · Zbl 1188.22003
[35] Vickers, S., Topology via Logic (1989), CUP · Zbl 0668.54001
[36] Wehrung, F., Refinement monoids, equidecomposability types, and Boolean inverse semigroups (2016), 216 pp. · Zbl 1447.20005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.