×

On the spectralization of affine and perfectly normal spaces. (English) Zbl 1408.14197

The paper deals with developing classical scheme theory. Namely, the authors consider scheme-theoretical background subject – relations between spectralization and topology.
The authors show that for a field \(K\) and \(n\geq 1\), the soberification \(\mathcal{S}(\mathbb{A}^n(K))\) of the affine \(n\)-space \(\mathbb{A}^n(K)\) over \(K\) is homeomorphic to its spectralization \(\mathcal{BS}(\mathbb{A}^n(K))\), and it can be embedded into the spectrum \(\mathrm{Spec}(K[X_1,\dots,X_n])\). Moreover, if the field \(K\) is algebraically closed, then there are homeomorphisms \(\mathcal{S}(\mathbb{A}^n(K)) \approx\mathcal{BS}(\mathbb{A}^n(K))\approx \mathrm{Spec}(K[X_1,\dots,X_n])\). They also show that for a space \(X\), the subspace \(z\mathrm{Spec}(C(X))\subseteq\mathrm{Spec}(C(X))\) of prime z-ideals of the ring \(C(X)\) of real-valued continuous functions on \(X\) is homeomorphic to the space \(z\mathcal{SR}(X)\) of prime \(z\)-filters with an appropriate topology and there is a homeomorphism \(\mathcal{BS}(X)\approx z\mathrm{Spec}(C(X))\) provided \(X\) is perfectly normal. (Notions of Sober space and Soberification deals with space improving. They are defined at pages 514 and 515 resp.)
The paper is self-contained elementary and easy for reader.

MSC:

14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem)
18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
46E25 Rings and algebras of continuous, differentiable or analytic functions
54D80 Special constructions of topological spaces (spaces of ultrafilters, etc.)
Full Text: DOI

References:

[1] [1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969. AtiyahM. F.MacdonaldI. G.Introduction to Commutative AlgebraAddison-WesleyReading1969 · Zbl 0175.03601
[2] [2] C. E. Aull and R. Lowen, Handbook of the History of General Topology. Vol. 1, Kluwer Academic, Dordrecht, 1997. AullC. E.LowenR.Handbook of the History of General Topology. Vol. 1Kluwer AcademicDordrecht1997 · Zbl 0888.54001
[3] [3] A. Ayache and O. Echi, The envelope of a subcategory in topology and group theory, Int. J. Math. Math. Sci. 2005 (2005), no. 21, 3387-3404. AyacheA.EchiO.The envelope of a subcategory in topology and group theoryInt. J. Math. Math. Sci.200520052133873404 · Zbl 1145.18300
[4] [4] B. Banaschewski, Coherent frames, Continuous Lattices, Lecture Notes in Math. 871, Springer, Berlin (1981), 1-11. BanaschewskiB.Coherent framesContinuous LatticesLecture Notes in Math. 871SpringerBerlin1981111 · Zbl 0461.06010
[5] [5] S. Bloom, Basic theory of algebraic geometry, preprint (2010), http://www.math.uchicago.edu/ may/VIGRE/VIGRE2010/REUPapers/Bloom.pdf. <element-citation publication-type=”other“> BloomS.Basic theory of algebraic geometryPreprint2010 <ext-link ext-link-type=”uri“ xlink.href=”>http://www.math.uchicago.edu/ may/VIGRE/VIGRE2010/REUPapers/Bloom.pdf
[6] [6] R. Engelking, General Topology, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989. EngelkingR.General TopologySigma Ser. Pure Math. 6HeldermannBerlin1989 · Zbl 0684.54001
[7] [7] L. Gillman and M. Jerison, Rings of Continuous Functions, D. Van Nostrand, Princeton, 1960. GillmanL.JerisonM.Rings of Continuous FunctionsD. Van NostrandPrinceton1960 · Zbl 0093.30001
[8] [8] J. Goubault-Larrecq, Non-Hausdorff Topology and Domain Theory, New Math. Monogr., Cambridge University Press, Cambridge, 2013. Goubault-LarrecqJ.Non-Hausdorff Topology and Domain TheoryNew Math. Monogr.Cambridge University PressCambridge2013 · Zbl 1280.54002
[9] [9] J. Goubault-Larrecq, http://projects.lsv.ens-cachan.fr/topology/?page_id=12. <element-citation publication-type=”other“> Goubault-LarrecqJ. <ext-link ext-link-type=”uri“ xlink.href=”>http://projects.lsv.ens-cachan.fr/topology/?page_id=12Website
[10] [10] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977. HartshorneR.Algebraic GeometryGrad. Texts in Math. 52SpringerNew York1977 · Zbl 0367.14001
[11] [11] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43-60. HochsterM.Prime ideal structure in commutative ringsTrans. Amer. Math. Soc.14219694360 · Zbl 0184.29401
[12] [12] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Math. Ser. 4, Princeton University Press, Princeton, 1941. HurewiczW.WallmanH.Dimension TheoryPrinceton Math. Ser. 4Princeton University PressPrinceton1941 · JFM 67.1092.03
[13] [13] P. T. Johnstone, Stone Spaces, Cambridge Stud. Adv. Math. 3, Cambridge University Press, Cambridge, 1986. JohnstoneP. T.Stone SpacesCambridge Stud. Adv. Math. 3Cambridge University PressCambridge1986 · Zbl 0586.54001
[14] [14] V. Kannan, Reflexive cum coreflexive subcategories in topology, Math. Ann. 195 (1972), 168-174. KannanV.Reflexive cum coreflexive subcategories in topologyMath. Ann.1951972168174 · Zbl 0215.09701
[15] [15] S. MacLane, Categories for the Working Mathematician, Grad. Texts in Math. 5, Springer, New York, 1971. MacLaneS.Categories for the Working MathematicianGrad. Texts in Math. 5SpringerNew York1971 · Zbl 0232.18001
[16] [16] R. G. Montgomery, Structures determined by prime ideals of rings of functions, Trans. Amer. Math. Soc. 147 (1970), 367-380. MontgomeryR. G.Structures determined by prime ideals of rings of functionsTrans. Amer. Math. Soc.1471970367380 · Zbl 0222.54014
[17] [17] R. G. Montgomery, The mapping of prime \(z\)-ideals, Symposia Mathematica. Vol. XVII (Rome 1973), Academic Press, London (1976), 113-124. MontgomeryR. G.The mapping of prime \(z\)-idealsSymposia Mathematica. Vol. XVIIRome 1973Academic PressLondon1976113124 · Zbl 0331.54006
[18] [18] N. Schwartz, Locales as spectral spaces, Algebra Universalis 70 (2013), no. 1, 1-42. SchwartzN.Locales as spectral spacesAlgebra Universalis7020131142 · Zbl 1288.06020
[19] [19] N. Schwartz, Spectral reflections of topological spaces, Appl. Categ. Structures 25 (2017), no. 6, 1159-1185. SchwartzN.Spectral reflections of topological spacesAppl. Categ. Structures252017611591185 · Zbl 1388.54013
[20] [20] J. Schröder, Das Wallman-Verfahren und inverse Limites, Quaest. Math. 2 (1977/78), no. 1-3, 325-333. SchröderJ.Das Wallman-Verfahren und inverse LimitesQuaest. Math.21977/781-3325333 · Zbl 0382.54016
[21] [21] A. Tarizadeh, On the category of profinite spaces as a reflective subcategory, Appl. Gen. Topol. 14 (2013), no. 2, 147-157. TarizadehA.On the category of profinite spaces as a reflective subcategoryAppl. Gen. Topol.1420132147157 · Zbl 1323.54018
[22] [22] The Stacks Project, https://stacks.math.columbia.edu/tag/08YF. <element-citation publication-type=”other“> The Stacks Project, <ext-link ext-link-type=”uri“ xlink.href=”>https://stacks.math.columbia.edu/tag/08YFWebsite
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.