×

Empirical likelihood-based inference for the difference of two location parameters using smoothed M-estimators. (English) Zbl 1426.62139

Summary: We consider one of the classical problems in statistics: the inference for the two-sample location problem. In this paper, we present a new empirical likelihood (EL) method for the difference of two smoothed M-estimators. To deal with additional nuisance scale parameters, we use the plug-in empirical likelihood, and we establish asymptotic properties of the new estimators. For the empirical study, we consider the important case of the smoothed Huber M-estimator. Our empirical results show that the new method is a competitive alternative to the classical procedures regarding inference about the difference of two location parameters. The software implementation for the new empirical likelihood method is based on the R package EL, which has been developed for related two-sample problems.

MSC:

62G10 Nonparametric hypothesis testing
62G35 Nonparametric robustness

Software:

R; robustbase; EL
Full Text: DOI

References:

[1] Cers E, Valeinis J (2011) EL: two-sample empirical likelihood. R package version 1.0
[2] Hall P, Welsh AH (1984) Convergence for estimates of parameters of regular variation. Ann Stat 12(3):1079-1084 · Zbl 0539.62048 · doi:10.1214/aos/1176346723
[3] Hampel F, Henning C, Ronchetti EA (2011) A smoothing principle for the Huber and other location M-estimators. Comput Stat Data Anal 55(1):324-337 · Zbl 1247.62058 · doi:10.1016/j.csda.2010.05.001
[4] Heritier S, Cantoni E, Copt S, Victoria-Feser MP (2009) Robust methods in biostatistics. Wiley, New York · Zbl 1163.62085 · doi:10.1002/9780470740538
[5] Hjort NL, McKeague IW, Van Keilegom I (2009) Extending the scope of empirical likelihood. Ann Stat 37(3):1079-1111 · Zbl 1160.62029 · doi:10.1214/07-AOS555
[6] Huber PJ (1964) Robust estimation of a location parameter. Ann Math Stat 35:73-101 · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[7] Marazzi A (2002) Bootstrap tests for robust means of asymmetric distributions with unequal shapes. Comput Stat Data Anal 49:503-528 · Zbl 1101.62321 · doi:10.1016/S0167-9473(01)00088-3
[8] Maronna RA, Martin RD, Yohai VJ (2006) Robust statistics. Theory and methods. Wiley, New York · Zbl 1094.62040 · doi:10.1002/0470010940
[9] Owen AB (1988) Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75(2):237-249 · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237
[10] Owen AB (2001) Empirical likelihood. Chapman & Hall/CRC Press, New York · Zbl 0989.62019 · doi:10.1201/9781420036152
[11] Qin J, Lawless J (1994) Empirical likelihood and general estimating equations. Ann Stat 22(1):300-325 · Zbl 0799.62049 · doi:10.1214/aos/1176325370
[12] Qin Y, Zhao L (2000) Empirical likelihood ratio confidence intervals for various differences of two populations. J Syst Sci Complex 13(1):23-30 · Zbl 0973.62038
[13] Stigler SM (1977) Do robust estimators work with real data? Ann Stat 5(6):1055-1098 · Zbl 0374.62050 · doi:10.1214/aos/1176343997
[14] Valeinis J (2007) Confidence bands for structural relationship models. Ph. D. thesis, University of Goettingen, Goettingen
[15] Valeinis J, Cers E, Cielens J (2010) Two-sample problems in statistical data modelling. Math Modell Anal 15:137-151 · Zbl 1191.62091 · doi:10.3846/1392-6292.2010.15.137-151
[16] Wasserman L (2006) All of nonparametric statistics. Springer, New York · Zbl 1099.62029
[17] Wilcox R (2005) Introduction to robust estimation and hypothesis testing, 2nd edn. Elsevier Academic Press, Burlington · Zbl 1113.62036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.