×

Minimal invariant regions and minimal globally attracting regions for variable-k reaction systems. (English) Zbl 1510.37127

The authors consider reaction network models in the form of ordinary differential equations with powers on the right-hand side. The network is described by a graph with weights (which are reaction rate constants). The authors give an explicit construction of the minimal invariant regions and minimal globally attracting regions for variable-\(k\) dynamical systems generated by two reversible reactions. Their aim is to prove persistence and permanence, i.e., positiveness of all concentrations and staying of the state in a neighbourhood of a point. The understanding of these properties is important both in ecological models and in chemical dynamics.

MSC:

37N25 Dynamical systems in biology
37E25 Dynamical systems involving maps of trees and graphs
37C75 Stability theory for smooth dynamical systems
80A30 Chemical kinetics in thermodynamics and heat transfer
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92E20 Classical flows, reactions, etc. in chemistry
92D40 Ecology
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

References:

[1] L. Adleman, M. Gopalkrishnan, M. Huang, P. Moisset and D. Reishus, On the mathematics of the law of mass action, in A Systems Theoretic Approach to Systems and Synthetic Biology I: Models and System Characterizations, Springer, 2014, 3-46.
[2] D. Anderson, A proof of the global attractor conjecture in the single linkage class case, SIAM J. Appl. Math., 71, 1487-1508, 2011 · Zbl 1227.92013 · doi:10.1137/11082631X
[3] F. Blanchini, Set invariance in control, Automatica, 35, 1747-1767, 1999 · Zbl 0935.93005
[4] G. Craciun, Toric differential inclusions and a proof of the global attractor conjecture, arXiv preprint, arXiv: 1501.02860.
[5] G. Craciun, Polynomial dynamical systems, reaction networks, and toric differential inclusions, SIAM J. Appl. Algebra Geom., 3, 87-106, 2019 · Zbl 1412.37035 · doi:10.1137/17M1129076
[6] G. A. Craciun Deshpande, Endotactic networks and toric differential inclusions, SIAM J. Appl. Dyn. Syst., 19, 1798-1822, 2020 · Zbl 1461.37077 · doi:10.1137/19M1269312
[7] G. A. H. J. Craciun Deshpande Yeon, Quasi-toric differential inclusions, Discrete Contin. Dyn. Syst. Ser. B, 26, 2343-2359, 2021 · Zbl 1471.37027 · doi:10.3934/dcdsb.2020181
[8] G. A. A. B. Craciun Dickenstein Shiu Sturmfels, Toric dynamical systems, J. Symbol. Comput., 44, 1551-1565, 2009 · Zbl 1188.37082 · doi:10.1016/j.jsc.2008.08.006
[9] G. F. C. Craciun Nazarov Pantea, Persistence and permanence of mass-action and power-law dynamical systems, SIAM J. Appl. Math., 73, 305-329, 2013 · Zbl 1277.37106 · doi:10.1137/100812355
[10] Y. Ding, A. Deshpande and G. Craciun, Minimal invariant regions and minimal globally attracting regions for toric differential inclusions, Adv. in Appl. Math., 136 (2022), Paper No. 102307, 34 pp. arXiv: 2006.08735. · Zbl 1494.37015
[11] M. Feinberg, Foundations of Chemical Reaction Network Theory, Springer, 2019. · Zbl 1420.92001
[12] M. E. A. Gopalkrishnan Miller Shiu, A geometric approach to the global attractor conjecture, SIAM J. Appl. Dyn. Sys., 13, 758-797, 2014 · Zbl 1301.34063 · doi:10.1137/130928170
[13] J. Gunawardena, Chemical reaction network theory for in-silico biologists, Notes available for download at http://vcp.med.harvard.edu/papers/crnt.pdf, 5.
[14] M. Nagumo, Über die Lage der integralkurven gewöhnlicher Differentialgleichungen, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, 24, 551-559, 1942 · Zbl 0061.17204
[15] C. Pantea, On the persistence and global stability of mass-action systems, SIAM J. Math. Anal., 44, 1636-1673, 2012 · Zbl 1316.37041 · doi:10.1137/110840509
[16] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ. 1970. · Zbl 0193.18401
[17] R. Rockafellar and R. Wets, Variational Analysis, vol. 317, Springer Science & Business Media, 2009.
[18] M. Savageau, Biochemical systems analysis: I. Some mathematical properties of the rate law for the component enzymatic reactions, J. Theor. Biol., 25, 365-369, 1969
[19] D. D. Siegel MacLean, Global stability of complex balanced mechanisms, J. Math. Chem., 27, 89-110, 2000 · Zbl 1012.92046 · doi:10.1023/A:1019183206064
[20] E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Transactions on Automatic Control, 46, 1028-1047, 2001 · Zbl 1049.92020 · doi:10.1109/9.935056
[21] E. Voit, H. Martens and S. Omholt, 150 years of the mass action law, PLoS Comput. Biol., 11 (2015), e1004012.
[22] P. C. Waage Gulberg, Studies concerning affinity, J. Chem. Edu., 63, 1044, 1986 · doi:10.1021/ed063p1044
[23] P. G. Yu Craciun, Mathematical analysis of chemical reaction systems, Isr. J. Chem., 58, 733-741, 2018 · doi:10.1002/ijch.201800003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.