×

A two-dimensional polynomial mapping with a wandering Fatou component. (English) Zbl 1368.37055

Sullivan’s “non-wandering domain theorem” asserts that every Fatou component of each rational map is eventually periodic. This result is fundamental for the study of dynamics of rational maps since it opens the way to a complete description of the dynamics in the Fatou set of rational maps and also introduces quasi-conformal mappings as a new tool in this research area. This claim has been generalized to the case of entire mappings with finitely many singular values. On the other hand, various examples of entire mappings with wandering Fatou components have been also constructed. In this paper, the authors apply the parabolic implosion technique and an idea of M. Lyubich to show that there exists an endomorphism \(P:\;\mathbb{P}^2(\mathbb{C})\rightarrow\mathbb{P}^2(\mathbb{C})\), induced by a polynomial skew-product mapping \(P:\;\mathbb{C}^2\rightarrow\mathbb{C}^2\), possessing a wandering Fatou component. They also give real examples with wandering domains in \(\mathbb{R}^2\).

MSC:

37F50 Small divisors, rotation domains and linearization in holomorphic dynamics
37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
30C20 Conformal mappings of special domains
30C65 Quasiconformal mappings in \(\mathbb{R}^n\), other generalizations

References:

[1] I. N. Baker, ”An entire function which has wandering domains,” J. Austral. Math. Soc. Ser. A, vol. 22, iss. 2, pp. 173-176, 1976. · Zbl 0335.30001
[2] R. L. Benedetto, ”Wandering domains and nontrivial reduction in non-Archimedean dynamics,” Illinois J. Math., vol. 49, iss. 1, pp. 167-193, 2005. · Zbl 1137.11354
[3] E. Bedford, J. Smillie, and T. Ueda, Parabolic bifurcations in complex dimension two, 2012. · Zbl 1365.37044
[4] C. J. Bishop, ”Constructing entire functions by quasiconformal folding,” Acta Math., vol. 214, iss. 1, pp. 1-60, 2015. · Zbl 1338.30016 · doi:10.1007/s11511-015-0122-0
[5] X. Buff, J. Écalle, and A. Epstein, ”Limits of degenerate parabolic quadratic rational maps,” Geom. Funct. Anal., vol. 23, iss. 1, pp. 42-95, 2013. · Zbl 1364.37105 · doi:10.1007/s00039-012-0203-6
[6] A. M. Blokh and Y. M. Lyubich, ”Non-existence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems 2. The smooth case,” Ergodic Theory Dynam. Systems, vol. 9, iss. 4, pp. 751-758, 1989. · Zbl 0665.58024 · doi:10.1017/S0143385700005319
[7] L. Boc-Thaler, J. E. Fornaess, and H. Peters, ”Fatou components with punctured limit sets,” Ergodic Theory Dynam. Systems, vol. 35, iss. 5, pp. 1380-1393, 2015. · Zbl 1335.37027 · doi:10.1017/etds.2013.115
[8] A. Denjoy, ”Sur les courbes définies par les équations différentielles à la surface du tore,” J. Math. Pures Appl., vol. 11, pp. 333-376, 1932. · Zbl 0006.30501
[9] A. Douady, ”Does a Julia set depend continuously on the polynomial?,” in Complex Dynamical Systems, Providence, RI: Amer. Math. Soc., 1994, vol. 49, pp. 91-138. · Zbl 0934.30023 · doi:10.1090/psapm/049/1315535
[10] R. Dujardin, A non-laminar dynamical Green current. · Zbl 1343.37034 · doi:10.1007/s00208-015-1274-0
[11] R. Dujardin and M. Lyubich, ”Stability and bifurcations for dissipative polynomial automorphisms of \(\BbbC^2\),” Invent. Math., vol. 200, iss. 2, pp. 439-511, 2015. · Zbl 1337.37029 · doi:10.1007/s00222-014-0535-y
[12] J. Écalle, Les Fonctions Résurgentes. Tome III: L’Équation du Pont et la Classification Analytique des Objects Locaux, Orsay: Université de Paris-Sud, Département de Mathématiques, 1985, vol. 85. · Zbl 0602.30029
[13] A. L. Epstein, Towers of Finite Type Complex Analytic Maps, Ann Arbor, MI: ProQuest LLC, 1993.
[14] A. E. Eremenko and J. M. Lyubich, ”Examples of entire functions with pathological dynamics,” J. London Math. Soc., vol. 36, iss. 3, pp. 458-468, 1987. · Zbl 0601.30033 · doi:10.1112/jlms/s2-36.3.458
[15] A. E. Eremenko and Y. M. Lyubich, ”Dynamical properties of some classes of entire functions,” Ann. Inst. Fourier \((\)Grenoble\()\), vol. 42, iss. 4, pp. 989-1020, 1992. · Zbl 0735.58031 · doi:10.5802/aif.1318
[16] J. E. Fornaess and N. Sibony, ”Fatou and Julia sets for entire mappings in \({\mathbf C}^k\),” Math. Ann., vol. 311, iss. 1, pp. 27-40, 1998. · Zbl 0931.37016 · doi:10.1007/s002080050174
[17] J. E. Fornaess and N. Sibony, ”Some open problems in higher dimensional complex analysis and complex dynamics,” Publ. Mat., vol. 45, iss. 2, pp. 529-547, 2001. · Zbl 0993.32001 · doi:10.5565/PUBLMAT_45201_11
[18] L. R. Goldberg and L. Keen, ”A finiteness theorem for a dynamical class of entire functions,” Ergodic Theory Dynam. Systems, vol. 6, iss. 2, pp. 183-192, 1986. · Zbl 0657.58011 · doi:10.1017/S0143385700003394
[19] J. Guckenheimer, ”Sensitive dependence to initial conditions for one-dimensional maps,” Comm. Math. Phys., vol. 70, iss. 2, pp. 133-160, 1979. · Zbl 0429.58012 · doi:10.1007/BF01982351
[20] M. Hakim, ”Analytic transformations of \((\mathbb C^p,0)\) tangent to the identity,” Duke Math. J., vol. 92, iss. 2, pp. 403-428, 1998. · Zbl 0952.32012 · doi:10.1215/S0012-7094-98-09212-2
[21] M. Herman, ”Exemples de fractions rationnelles ayant une orbite dense sur la sphère de Riemann,” Bull. Soc. Math. France, vol. 112, iss. 1, pp. 93-142, 1984. · Zbl 0559.58020
[22] M. Jonsson, ”Dynamics of polynomial skew products on \(\mathbb C^2\),” Math. Ann., vol. 314, iss. 3, pp. 403-447, 1999. · Zbl 0940.37018 · doi:10.1007/s002080050301
[23] P. Lavaurs, Systèmes dynamiques holomorphiques : explosion des points périodiques, 1989.
[24] K. Lilov, Fatou theory in two dimensions, ProQuest LLC, Ann Arbor, MI, 2004. · Zbl 1160.37365
[25] Y. M. Lyubich, ”Non-existence of wandering intervals and structure of topological attractors of one-dimensional dynamical systems. I. The case of negative Schwarzian derivative,” Ergodic Theory Dynam. Systems, vol. 9, iss. 4, pp. 737-749, 1989. · Zbl 0665.58023 · doi:10.1017/S0143385700005307
[26] M. Lyubich and H. Peters, ”Classification of invariant Fatou components for dissipative Hénon maps,” Geom. Funct. Anal., vol. 24, iss. 3, pp. 887-915, 2014. · Zbl 1301.32013 · doi:10.1007/s00039-014-0280-9
[27] M. Martens, W. de Melo, and S. van Strien, ”Julia-Fatou-Sullivan theory for real one-dimensional dynamics,” Acta Math., vol. 168, iss. 3-4, pp. 273-318, 1992. · Zbl 0761.58007 · doi:10.1007/BF02392981
[28] H. Peters and L. Vivas, Polynomial skew-products with wandering Fatou-disks. · Zbl 1339.37039 · doi:10.1007/s00209-015-1600-y
[29] M. Shishikura, ”Bifurcation of parabolic fixed points,” in The Mandelbrot Set, Theme and Variations, Cambridge Univ. Press, Cambridge, 2000, vol. 274, pp. 325-363. · Zbl 1062.37043
[30] D. Sullivan, ”Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains,” Ann. of Math., vol. 122, iss. 3, pp. 401-418, 1985. · Zbl 0589.30022 · doi:10.2307/1971308
[31] E. Trucco, ”Wandering Fatou components and algebraic Julia sets,” Bull. Soc. Math. France, vol. 142, iss. 3, pp. 411-464, 2014. · Zbl 1392.37117
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.