×

Generic representations of abelian groups and extreme amenability. (English) Zbl 1279.43002

A representation of a countable group \(\Gamma\) into a Polish group \(G\) is a homomorphism \(\Gamma \rightarrow G\). The space of all representations \(Hom (\Gamma, G)\) is a closed subspace of the Polish space \(G^{\Gamma}\) and is therefore also Polish. The authors are interested in the generic properties of representations, that hold for a comeager set of \(\pi \in Hom(\Gamma, G)\) that are moreover invariant under \(G\)-action. In many situations it turns out that the orbits are meager. Important examples of this phenomenon come from ergodic theory. The important result of the paper is Theorem 1.1. Let \(\Gamma\) be a countable group and \(G\) a Polish group. Then the set {\(\pi: \overline{\pi(\Gamma)}\) is extremely amenable} is \(G_{\delta}\) in \(Hom (\Gamma, G)\). This theorem is quite general and may be considered as a starting point for the rest of the results. Under some assumptions on \(\Gamma\), it is proven that in the first case there is a unique generic \(\overline{\pi(\Gamma)}\), and in the second it is shown that \(\overline{\pi(\Gamma)}\) is extremely amenable. It is also shown that if \(\Gamma\) is torsion-free, the centralizer of the generic \(\pi\) is as small as possible, extending a result of Chacon and Schwartzbauer from ergodic theory.

MSC:

43A07 Means on groups, semigroups, etc.; amenable groups
37C99 Smooth dynamical systems: general theory
54C99 Maps and general types of topological spaces defined by maps
34C99 Qualitative theory for ordinary differential equations

References:

[1] O. N. Ageev, The generic automorphism of a Lebesgue space conjugate to a G-extension for any finite abelian group G, Rosiĭskaya Akademiya Nauk. Doklady Akademii Nauk 374 (2000), 439–442. · Zbl 1044.37003
[2] O. N. Ageev, On the genericity of some nonasymptotic dynamic properties, Rossiĭskaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk 58 (2003), 177–178. · doi:10.4213/rm596
[3] B. Bekka, P. de la Harpe and A. Valette, Kazhdan’s property (T), New Mathematical Monographs, Vol. 11, Cambridge University Press, Cambridge, 2008. · Zbl 1146.22009
[4] J. P. Conze, Entropie d’un groupe abélien de transformations, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 25 (1972/73), 11–30. · Zbl 0261.28015 · doi:10.1007/BF00533332
[5] R. V. Chacon and T. Schwartzbauer, Commuting point transformations, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 11 (1969), 277–287. · Zbl 0165.18903 · doi:10.1007/BF00531651
[6] G. B. Folland, A Course in Abstract Harmonic Analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. · Zbl 0857.43001
[7] L. Fuchs, Infinite Abelian Groups. Vol. I, Pure and Applied Mathematics, Vol. 36, Academic Press, New York, 1970.
[8] M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure preserving transformations, Journal of the European Mathematical Society (JEMS) 6 (2004), 277–292. · Zbl 1063.37004 · doi:10.4171/JEMS/10
[9] S. Gao, Invariant Descriptive Set Theory, Pure and Applied Mathematics, Vol. 293, CRC Press, Boca Raton, FL, 2009. · Zbl 1154.03025
[10] E. Glasner, On minimal actions of Polish groups, Topology and its Applications 85 (1998), 119–125, 8th Prague Topological Symposium on General Topology and Its Relations to Modern Analysis and Algebra (1996). · Zbl 0923.54030 · doi:10.1016/S0166-8641(97)00143-0
[11] K. W. Gruenberg, Residual properties of infinite soluble groups, Proceedings of the London Mathematical Society 7 (1957), 29–62. · Zbl 0077.02901 · doi:10.1112/plms/s3-7.1.29
[12] M. Gromov and V. D. Milman, A topological application of the isoperimetric inequality, American Journal of Mathematics 105 (1983), 843–854. · Zbl 0522.53039 · doi:10.2307/2374298
[13] T. Giordano and V. Pestov, Some extremely amenable groups related to operator algebras and ergodic theory, Journal of the Institute of Mathematics of Jussieu 6 (2007), 279–315. · Zbl 1133.22001 · doi:10.1017/S1474748006000090
[14] E. Glasner and B. Weiss, Spatial and non-spatial actions of Polish groups, Ergodic Theory and Dynamical Systems 25 (2005), 1521–1538. · Zbl 1085.54027 · doi:10.1017/S0143385705000052
[15] W. Hodges, I. Hodkinson, D. Lascar and S. Shelah, The small index property for {\(\omega\)}-stable {\(\omega\)}-categorical structures and for the random graph, Journal of the London Mathematical Society 48 (1993), 204–218. · Zbl 0788.03039 · doi:10.1112/jlms/s2-48.2.204
[16] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. Vol. I, second edition, Grundlehren der Mathematischen Wissenschaften[Fundamental Principles of Mathematical Sciences], Vol. 115, Springer-Verlag, Berlin, 1979.
[17] A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer-Verlag, New York, 1995. · Zbl 0819.04002
[18] A. S. Kechris, Global aspects of ergodic group actions, Mathematical Surveys and Monographs, Vol. 160, American Mathematical Society, Providence, RI, 2010. · Zbl 1189.37001
[19] J. King, The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory and Dynamical Systems 6 (1986), 363–384. · Zbl 0595.47005 · doi:10.1017/S0143385700003552
[20] J. King, The generic transformation has roots of all orders, Colloquium Mathemtaicum 84/85 (2000), 521–547, Dedicated to the memory of Anzelm Iwanik. · Zbl 0972.37001
[21] D. Kerr, H. Li and M. Pichot, Turbulence, representations, and trace-preserving actions, Proceedings of the London Mathematical Society 100 (2010), 459–484. · Zbl 1192.46063 · doi:10.1112/plms/pdp036
[22] A. S. Kechris and C. Rosendal, Turbulence, amalgamation and generic automorphisms of homogeneous structures, Proceedings of the London Mathematical Society 94 (2007), 302–350. · Zbl 1118.03042 · doi:10.1112/plms/pdl007
[23] A. S. Kechris and R. D. Tucker-Drob, The complexity of classification problems in ergodic theory,in Appalachian Set Theory, (J. Cummings and E. Schimmerling, eds.), London Mathematical Society Lecture Note Series, to appear. · Zbl 1367.03082
[24] S. Lang, Algebra, revised third edition edn., Graduate Texts in Mathematics, Vol. 211, Springer-Verlag, New York, 2002.
[25] A. Leiderman, V. Pestov, M. Rubin, S. Sołecki and V. V. Uspenskij (eds.), Special issue: Workshop on the Urysohn space, Topology and its Applications, Vol. 155, 2008, Held at Ben-Gurion University of the Negev, Beer Sheva, May 21–24, 2006.
[26] J. Melleray, Extensions of generic measure-preserving actions, Annales de l’Institut Joseph Fourier, to appear. · Zbl 1306.22012
[27] V. G. Pestov, Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel Journal of Mathematics 127 (2002), 317–357. · Zbl 1007.43001 · doi:10.1007/BF02784537
[28] V. G. Pestov, Dynamics of Infinite-Dimensional Groups. The Ramsey-Dvoretzky-Milman Phenomenon, Revised edition of Dynamics of Infinite-Dimensional Groups and Ramsey-Type Phenomena [Inst. Mat. Pura. Apl. (IMPA), Rio de Janeiro, 2005], University Lecture Series, Vol. 40, American Mathematical Society, Providence, RI, 2006 · Zbl 1123.37003
[29] V. G. Pestov, Forty-plus open problems on large topological groups, in Open Problems in Topology. II (E. Pearl, ed.), Elsevier B. V., Amsterdam, 2007, pp. 439–450.
[30] V. S. Prasad, Generating dense subgroups of measure preserving transformations, Proceedings of the American Mathematical Society 83 (1981), 286–288. · Zbl 0468.28019 · doi:10.1090/S0002-9939-1981-0624915-2
[31] V. G. Pestov and V. V. Uspenskij, Representations of residually finite groups by isometries of the Urysohn space, Journal of the Ramanujan Mathematicsl Socirty 21 (2006), 189–203. · Zbl 1111.43003
[32] C. Rosendal, The generic isometry and measure preserving homeomorphism are conjugate to their powers, Fundamenta Mathematicae 205 (2009), 1–27. · Zbl 1189.03051 · doi:10.4064/fm205-1-1
[33] C. Rosendal, Finitely approximable groups and actions part II: Generic representations, Journal of Symbolic Logic 76 (2011), 1307–1321. · Zbl 1250.03086 · doi:10.2178/jsl/1318338851
[34] K. Slutsky, Non-genericity phenomenon in some ordered Fraïssé classes, Journal of Symbolic Logic 77 (2012), 987–1010. · Zbl 1257.03058 · doi:10.2178/jsl/1344862171
[35] S. Solecki, Closed subgroups generated by generic measure automorphisms, Ergodic Theory and Dynamical Systems, to appear. · Zbl 1350.37003
[36] A. M. Stepin and A. M. Eremenko, Nonuniqueness of an inclusion in a flow and the vastness of a centralizer for a generic measure-preserving transformation, Rossiĭskaya Akademiya Nauk. Matematicheskiĭ Sbornik 195 (2004), 95–108. · doi:10.4213/sm867
[37] J. Schreier and S. Ulam, Über die Permutationsgruppe der natürlichen Zachlenfolge, Studia Mathematica 4 (1933), 134–141. · Zbl 0008.20003
[38] S. V. Tikhonov, The generic action of the group \(\mathbb{R}\)d can be embedded into the action of the group \(\mathbb{R}\)d, Rosiĭskaya Akademiya Nauk. Doklady Akademii Nauk 391 (2003), 26–28.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.