×

An algorithm for approximating a common solution of some nonlinear problems in Banach spaces with an application. (English) Zbl 1502.47080

Summary: In this paper, we construct a new Halpern-type subgradient extragradient iterative algorithm. The sequence generated by this algorithm converges strongly to a common solution of a variational inequality, an equilibrium problem, and a \(J\)-fixed point of a continuous \(J\)-pseudo-contractive map in a uniformly smooth and two-uniformly convex real Banach space. Also, the theorem is applied to approximate a common solution of a variational inequality, an equilibrium problem, and a convex minimization problem. Moreover, a numerical example is given to illustrate the implementability of our algorithm. Finally, the theorem proved complements, improves, and unifies some related recent results in the literature.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47J20 Variational and other types of inequalities involving nonlinear operators (general)

References:

[1] Fichera, G., Problemi elastostatici con vincoli unilaterali; il problema di Signorini con ambigue condizioni al contorno, Mem. Accad. Naz. Lincei, 7, 91-140 (1964) · Zbl 0146.21204
[2] Stampacchia, G., Formes bilinéaires coercitives sur le ensembles convexes, C. R. Acad. Sci. Paris, 258, 4413-4416 (1964) · Zbl 0124.06401
[3] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Stud., 63, 123-145 (1994) · Zbl 0888.49007
[4] Antonio, S., Questioni di elasticità nonlinearizzata e semilinearizzata, Rend. Mat., 18, 1-45 (1959)
[5] Ceng, L. C.; Cho, S. Y.; Qin, X.; Yao, J. C., A general system of variational inequalities with nonlinear mappings in Banach spaces, J. Nonlinear Convex Anal., 20, 395-410 (2019) · Zbl 1478.47067
[6] Kinderlehrer, D.; Stampaccia, G., An Iteration to Variational Inequalities and Their Applications (1990), New York: Academic Press, New York
[7] Alber, Ya., Metric and generalized projection operators in Banach spaces: properties and applications, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, 15-50 (1996), New York: Dekker, New York · Zbl 0883.47083
[8] Ceng, L. C.; Petrusel, A.; Yao, J. C., On Mann viscosity subgradient extragradient algorithms for fixed point problems of finitely many strict pseudocontractions and variational inequalities, Mathematics, 7 (2019) · doi:10.3390/math7100925
[9] Browder, F. E., Nonlinear mappings of nonexpansive and accretive-type in Banach spaces, Bull. Am. Math. Soc., 73, 875-882 (1967) · Zbl 0176.45302 · doi:10.1090/S0002-9904-1967-11823-8
[10] Chidume, C. E.; Nnyaba, U. V.; Romanus, O. M.; Ezea, C. G., Convergence theorems for strictly J-pseudocontractions with application to zeros of Gamma-inverse strongly monotone maps, Panam. Math. J., 26, 57-76 (2016)
[11] Yao, Y.; Marino, G.; Muglia, L., A modified Korpelevich’s method convergent to the minimum-norm solution of a variational inequality, Optimization, 63, 559-569 (2014) · Zbl 1524.47105 · doi:10.1080/02331934.2012.674947
[12] Korpelevič, G. M., An extragradient method for finding saddle points and for other problems, Èkon. Mat. Metody, 12, 747-756 (1967) · Zbl 0342.90044
[13] Censor, Y.; Gibali, A.; Reich, S., The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., 148, 318-335 (2011) · Zbl 1229.58018 · doi:10.1007/s10957-010-9757-3
[14] Kraikaew, R.; Saejung, S., Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163, 399-412 (2014) · Zbl 1305.49012 · doi:10.1007/s10957-013-0494-2
[15] Ceng, L. C.; Petrusel, A.; Yao, J. C.; Yao, Y., Systems of variational inequalities with hierarchical variational inequality constraints for Lipschitzian pseudocontractions, Fixed Point Theory, 20, 113-133 (2019) · Zbl 1430.49004 · doi:10.24193/fpt-ro.2019.1.07
[16] Gibali, A.; Reich, S.; Zalas, R., Outer approximation methods for solving variational inequalities in Hilbert space, Optimization, 66, 417-437 (2017) · Zbl 1367.58006 · doi:10.1080/02331934.2016.1271800
[17] Alghamdi, M. A.; Shahzad, N.; Zegeye, H., A scheme for a solution of a variational inequality for a monotone mapping and a fixed point of a pseudocontractive mapping, J. Inequal. Appl., 2015 (2015) · Zbl 1338.47080 · doi:10.1186/s13660-015-0804-3
[18] Censor, Y.; Gibali, A.; Reich, S., Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space, Optim. Methods Softw., 26, 827-845 (2011) · Zbl 1232.58008 · doi:10.1080/10556788.2010.551536
[19] Chidume, C. E.; Nnakwe, M. O., Iterative algorithms for split variational inequalities and generalized split feasibility problems, with applications, J. Nonlinear Var. Anal., 3, 2, 127-140 (2019) · Zbl 1479.47065
[20] Ezeora, J. N., Convergence theorem for generalized mixed equilibrium problems and common fixed point problems for a family of multivalued mappings, Int. J. Anal. Appl., 10, 1, 48-57 (2016) · Zbl 1463.47182
[21] Van Hieu, D., Halpern subgradient extragradient method extended to equilibrium problems, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 111 (2017) · Zbl 1378.65136 · doi:10.1007/s13398-016-0328-9
[22] Kumam, P., A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive, Nonlinear Anal. Hybrid Syst., 2, 1245-1255 (2008) · Zbl 1163.49003 · doi:10.1016/j.nahs.2008.09.017
[23] Moudafi, A., Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal., 9, 37-43 (2008) · Zbl 1167.47049
[24] Qin, X.; Cho, Y. J.; Kang, S. M., Convergence theorems of common elements for equilibrium problems and fixed point problem in Banach spaces, J. Comput. Appl. Math., 225, 20-30 (2009) · Zbl 1165.65027 · doi:10.1016/j.cam.2008.06.011
[25] Takahashi, W.; Zembayashi, K., Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., 70, 45-57 (2009) · Zbl 1170.47049 · doi:10.1016/j.na.2007.11.031
[26] Kato, T., Nonlinear semigroups and evolution equations, J. Math. Soc. Jpn., 19, 511-520 (1967) · Zbl 0163.38303
[27] Chidume, C.E., Bello, A.U., Usman, B.: Iterative algorithms for zeros of strongly monotone Lipschitz maps in classical Banach spaces. SpringerPlus 4(1), 9
[28] Chidume, C. E.; Bello, A. U.; Oyindo, M. O., Convergence theorem for a countable family of multi-valued strictly pseudo-contractive mappings in Hilbert spaces, Int. J. Math. Anal., 9, 27, 1331-1340 (2015) · doi:10.12988/ijma.2015.5117
[29] Chidume, C. E.; Ndambomve, P.; Bello, A. U.; Okpala, M. E., The multiple-sets split equality fixed point problem for countable families of multi-valued demi-contractive mappings, Int. J. Math. Anal., 9, 10, 453-469 (2015) · doi:10.12988/ijma.2015.412209
[30] Chidume, C. E.; Ndambomve, P.; Bello, A. U.; Okpala, M. E., Strong convergence theorem for fixed points of nearly uniformly L-Lipschitzian asymptotically generalized Φ-hemicontractive mappings, Int. J. Math. Anal., 9, 52, 2555-2569 (2015) · doi:10.12988/ijma.2015.54144
[31] Bruck, R. E., A strongly convergent iterative method for the solution of \(0\in Ux\) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., 48, 114-126 (1974) · Zbl 0288.47048 · doi:10.1016/0022-247X(74)90219-4
[32] Reich, S., Extension problems for accretive sets in Banach spaces, J. Funct. Anal., 26, 378-395 (1977) · Zbl 0378.47037 · doi:10.1016/0022-1236(77)90022-2
[33] Schu, J., Iterative construction of fixed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl., 158, 407-413 (1991) · Zbl 0734.47036 · doi:10.1016/0022-247X(91)90245-U
[34] Kirk, W. A., On local expansions and accretive mappings, Int. J. Math. Math. Sci., 6, 419-429 (1983) · Zbl 0534.47032 · doi:10.1155/S016117128300037X
[35] Chidume, C. E.; Mutangadura, S. A., An example on the Mann iteration method for Lipschitz pseudocontrations, Proc. Am. Math. Soc., 129, 8, 2359-2363 (2001) · Zbl 0972.47062 · doi:10.1090/S0002-9939-01-06009-9
[36] Nnakwe, M. O.; Ifebude, B. C., A common fixed point of an infinite family of pseudo-contractive maps, Thai J. Math., 18, 3, 1387-1400 (2020) · Zbl 1492.47099
[37] Rockarfellar, R. T., Convex Analysis (1970), Princeton: Princeton University Press, Princeton · Zbl 0932.90001 · doi:10.1515/9781400873173
[38] Zegeye, H., Strong convergence theorems for maximal monotone mappings in Banach spaces, J. Math. Anal. Appl., 343, 663-671 (2008) · Zbl 1139.47053 · doi:10.1016/j.jmaa.2008.01.076
[39] Chidume, C. E.; Idu, K. O., Approximation of zeros of bounded maximal monotone maps, solutions of Hammerstein integral equations and convex minimization problems, Fixed Point Theory Appl., 2016 (2016) · Zbl 1461.47032 · doi:10.1186/s13663-016-0582-8
[40] Liu, B., Fixed point of strong duality pseudocontractive mappings and applications, Abstr. Appl. Anal., 2012 (2012) · Zbl 1254.47034 · doi:10.1155/2012/623625
[41] Su, Y.; Xu, H. K., A duality fixed point theorem and applications, Fixed Point Theory, 13, 1, 259-265 (2012) · Zbl 1327.47051
[42] Cheng, Q.; Su, Y.; Zhang, J., Duality fixed point and zero point theorems and applications, Abstr. Appl. Anal., 2012 (2012) · Zbl 1386.47006 · doi:10.1155/2012/391301
[43] Chidume, C. E.; Otubo, E. E.; Ezea, C. G., Strong convergence theorem for a common fixed point of an infinite family of J-nonexpansive maps with applications, Aust. J. Math. Anal. Appl., 13, 1 (2016) · Zbl 1382.47016
[44] Chidume, C. E.; Nnakwe, M. O., A new Halpern-type algorithm for a generalized mixed equilibrium problem and a countable family of generalized-J-nonexpansive maps, with applications, Carpath. J. Math., 34, 2, 191-198 (2018) · Zbl 1449.47105
[45] Chidume, C. E.; Nnakwe, M. O.; Otubo, E. E., A new iterative algorithm for a generalized mixed equilibrium problem and a countable family of nonexpansive-type maps, with applications, Fixed Point Theory, 21, 1, 109-124 (2020) · Zbl 1477.47062 · doi:10.24193/fpt-ro.2020.1.08
[46] Chidume, C. E.; Nnakwe, M. O., A strong convergence theorem for an inertial algorithm for a countable family of generalized nonexpansive maps, Fixed Point Theory, 21, 2, 441-452 (2020) · Zbl 07285136 · doi:10.24193/fpt-ro.2020.2.31
[47] Nnakwe, M.O.: An algorithm for approximating a common solution of variational inequality and convex minimization problems. Optimization. doi:10.1080/02331934.2020.1777995 · Zbl 07432200
[48] Chidume, C. E.; Adamu, A.; Chinwendu, L. O., Strong convergence theorem for some nonexpansive mappings in certain Banach spaces, Thai J. Math., 18, 3, 1537-1548 (2020) · Zbl 1492.47092
[49] Zegeye, H.; Shahzad, H., Solutions of variational inequality problems in the set of fixed points of pseudocontractive mappings, Carpath. J. Math., 30, 257-265 (2014) · Zbl 1324.47127
[50] Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., 16, 12, 1127-1138 (1991) · Zbl 0757.46033 · doi:10.1016/0362-546X(91)90200-K
[51] Kamimura, S.; Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim., 13, 938-945 (2002) · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[52] Rockafellar, R. T., On the maximality of sums of nonlinear monotone operators, Trans. Am. Math. Soc., 149, 75-88 (1970) · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[53] Xu, H. K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66, 2, 240-256 (2002) · Zbl 1013.47032 · doi:10.1112/S0024610702003332
[54] Mainge, P. E., The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces, Comput. Math. Appl., 59, 74-79 (2010) · Zbl 1189.49011 · doi:10.1016/j.camwa.2009.09.003
[55] Alber, Y.; Ryazantseva, I., Nonlinear Ill Posed Problems of Monotone Type (2006), London: Springer, London · Zbl 1086.47003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.