×

Limit theorems for wobbly interval intermittent maps. (English) Zbl 1482.60035

The authors consider the following interval maps \[ f_{M_j}(x)=\left\{\begin{array}{lr} x(1+M_j(x)x^\alpha),& \ x\in[0,1/2],\\ 2x-1,& \ x\in(1/2,1], \end{array}\right. \] where \({\alpha\in(0,1)}\) and \[ M_1(x)=\frac{c_0}{2^{\{c_1^{-1}\log x\}}},\ \ M_2(x)=a\left(1+b\sin\left(\frac{2\pi}{c_2}\log x\right)\right) \] for certain constants \({a, b, c_0, c_1, c_2}.\)
The authors obtain limit laws for such maps and Hölder observables. In turns out, that the laws are similar to some classical semistable laws (see [Z. Megyesi, Acta Sci. Math. 66, No. 1–2, 403–434 (2000; Zbl 0957.60020)]). The main theorem is partially motivated by the results of third author and P. Kevei [J. Theor. Probab. 33, No. 4, 2027–2060 (2020; Zbl 1454.37015)] and as the authors believe it can be modified for infinite measure case \({\alpha\geq1}.\)

MSC:

60F05 Central limit and other weak theorems
37A50 Dynamical systems and their relations with probability theory and stochastic processes
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems

References:

[1] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., Providence, RI, 1997. · Zbl 0882.28013
[2] J. Aaronson and M. Denker, Local limit theorems for partial sums of stationary se-quences generated by Gibbs-Markov maps, Stoch. Dynam. 1 (2001), 193-237. · Zbl 1039.37002
[3] I. Berkes, Strong approximation and a central limit theorem for St. Petersburg sums, Stoch. Processes Appl. 129 (2019), 4500-5409. · Zbl 1448.60043
[4] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia Math. Appl. 27, Cambridge Univ. Press, Cambridge, 1989. · Zbl 0667.26003
[5] H. Bruin, S. Luzzatto, and S. van Strien, Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup. 36 (2003), 621-646. · Zbl 1039.37021
[6] H. Bruin, I. Melbourne, and D. Terhesiu, Sharp polynomial bounds on decay of cor-relations for multidimensional nonuniformly hyperbolic systems and billiards, Ann. Henri Lebesgue 4 (2021), 407-451. · Zbl 1498.37053
[7] H. Bruin and D. Terhesiu, Upper and lower bounds for the correlation function via inducing with general return times, Ergodic Theory Dynam. Systems 38 (2018), 34-62.. · Zbl 1388.37012
[8] S. Csörgő, Rates of merge in generalized St. Petersburg games, Acta Sci. Math. (Szeged) 68 (2002), 815-847. · Zbl 1046.60017
[9] S. Csörgő, Fourier analysis of semistable distributions, Acta Appl. Math. 96 (2007), 159-174. · Zbl 1117.60015
[10] S. Csörgő and Z. Megyesi, Merging to semistable laws, Teor. Veroyatnost. i Primenen. 47 (2002), 90-109. · Zbl 1043.60014
[11] W. de Melo and S. van Strien, One-Dimensional Dynamics, Ergeb. Math. Grenzgeb. (3) 25, Springer, Berlin, 1993. · Zbl 0791.58003
[12] K. Díaz-Ordaz, M. P. Holland, and S. Luzzatto, Statistical properties of one-dimensio-nal maps with critical points and singularities, Stoch. Dynam. 4 (2006), 423-458. · Zbl 1130.37362
[13] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., Wiley, New York, 1971. · Zbl 0219.60003
[14] P. Gaspard and X.-J. Wang, Sporadicity: between periodic and chaotic dynamical behaviors, Proc. Nat. Acad. Sci. U.S.A. 85 (1988), 4591-4595. · Zbl 0668.58029
[15] S. Gouëzel, Central limit theorems and stable laws for intermittent maps, Probab. Theory Related Fields 128 (2004), 82-122. · Zbl 1038.37007
[16] S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel J. Math. 139 (2004), 29-65. · Zbl 1070.37003
[17] S. Gouëzel, Berry-Esseen theorem and local limit theorem for non uniformly expand-ing maps, Ann. Inst. H. Poincaré Probab. Statist. 41 (2005), 997-1024. · Zbl 1134.60323
[18] S. Gouëzel, Characterization of weak convergence of Birkhoff sums for Gibbs-Markov maps, Israel J. Math. 180 (2010), 1-41. · Zbl 1213.37017
[19] S. Gouëzel, Correlation asymptotics from large deviations in dynamical systems with infinite measure, Colloq. Math. 125 (2011), 193-212. · Zbl 1246.37017
[20] S. Gouëzel, Limit theorems in dynamical systems using the spectral method, in: Hyper-bolic Dynamics, Fluctuations and Large Deviations, Proc. Sympos. Pure Math. 89, Amer. Math. Soc., Providence, RI, 2015, 161-193. · Zbl 1376.37016
[21] Y. Guivarc’h et J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 73-98. · Zbl 0649.60041
[22] M. P. Holland, Slowly mixing systems and intermittency maps, Ergodic Theory Dy-nam. Systems 25 (2005), 133-159. · Zbl 1073.37044
[23] P. Kevei, Merging asymptotic expansions for semistable random variables, Lithuanian Math. J. 49 (2009), 40-54. · Zbl 1177.60031
[24] P. Kevei and S. Csörgő, Merging of linear combinations to semistable laws, J. Theoret. Probab. 22 (2009), 772-790. · Zbl 1173.60306
[25] P. Kevei and D. Terhesiu, Darling-Kac theorem for renewal shifts in the absence of regular variation, J. Theoret. Probab. 32 (2020), 2027-2060. · Zbl 1454.37015
[26] V. M. Kruglov, On the extension of the class of stable distributions, Theory Probab. Appl. 17 (1972), 685-694. · Zbl 0279.60035
[27] M. Liverani, B. Saussol, and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems 19 (1999), 671-685. · Zbl 0988.37035
[28] Z. Megyesi, A probabilistic approach to semistable laws and their domains of partial attraction, Acta Sci. Math. (Szeged) 66 (2000), 403-434. · Zbl 0957.60020
[29] I. Melbourne and D. Terhesiu, Operator renewal theory and mixing rates for dynamical systems with infinite measure, Invent. Math. 189 (2012), 61-110. · Zbl 1263.37011
[30] I. Melbourne and A. Török, Statistical limit theorems for suspension flows, Israel J. Math. 144 (2004), 191-209. · Zbl 1252.37010
[31] O. Sarig, Phase transitions for countable topological Markov shifts, Commun. Math. Phys. 217 (2001), 555-577. · Zbl 1007.37018
[32] O. Sarig, Subexponential decay of correlations, Invent. Math. 150 (2002), 629-653. · Zbl 1042.37005
[33] D. Terhesiu, Improved mixing rates for infinite measure preserving transformations, Erodic Theory Dynam. Systems 35 (2015), 585-614. · Zbl 1316.37007
[34] D. Terhesiu, Mixing rates for intermittent maps of high exponent, Probab. Theory Related Fields 166 (2016), 1025-1060. · Zbl 1372.37079
[35] M. Thaler and R. Zweimüller, Distributional limit theorems in infinite ergodic theory, Probab. Theory Related Fields 135 (2006), 15-52. · Zbl 1085.37005
[36] L. S. Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153-188. · Zbl 0983.37005
[37] R. Zweimüller, Mixing limit theorems for ergodic transformations, J. Theoret. Probab. 4 (2007), 1059-1071. · Zbl 1137.60017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.