×

Pre-threshold fractional susceptibility functions at Misiurewicz parameters. (English) Zbl 1480.37037

Summary: We show that the response, frozen and semifreddo fractional susceptibility functions of certain real-analytic unimodal families, at Misiurewicz parameters and for fractional differentiation index \(0\leqslant\eta<\frac{1}{2}\), are holomorphic on a disk of radius greater than one. This is a step towards solving a conjecture of V. Baladi and D. Smania [Commun. Math. Phys. 385, No. 3, 1957–2007 (2021; Zbl 1478.37044)], in the case of the aforementioned susceptibility functions.

MSC:

37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
37E05 Dynamical systems involving maps of the interval
37A10 Dynamical systems involving one-parameter continuous families of measure-preserving transformations

Citations:

Zbl 1478.37044

References:

[1] Aspenberg, M.; Baladi, V.; Leppänen, J.; Persson, T., On the fractional susceptibility function of piecewise expanding maps (2019)
[2] Baladi, V., On the susceptibility function of piecewise expanding interval maps, Commun. Math. Phys., 275, 839-859 (2007) · Zbl 1140.37327 · doi:10.1007/s00220-007-0320-5
[3] Baladi, V., Dynamical zeta functions and dynamical determinants for hyperbolic maps: A Functional Approach (2018), Berlin: Springer, Berlin · Zbl 1405.37001
[4] Baladi, V.; Benedicks, M.; Schnellmann, D., Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps, Invent. Math., 201, 773-844 (2015) · Zbl 1359.37049 · doi:10.1007/s00222-014-0554-8
[5] Baladi, V.; Smania, D., Fractional susceptibility functions for the quadratic family: Misiurewicz-Thurston parameters, Commun. Math. Phys., 385, 1957-2007 · Zbl 1478.37044 · doi:10.1007/s00220-021-04015-z
[6] Baladi, V.; Smania, D., Linear response formula for piecewise expanding unimodal maps, Nonlinearity, 21, 677-711 (2008) · Zbl 1140.37008 · doi:10.1088/0951-7715/21/4/003
[7] Baladi, V.; Smania, D., Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps, Ann. Sci. Éc. Norm. Supér., 45, 861-926 (2013) · Zbl 1277.37045 · doi:10.24033/asens.2179
[8] Collet, P.; Eckmann, J-P, Positive Liapunov exponents and absolute continuity for maps of the interval, Ergod. Theor. Dynam. Syst., 3, 13-46 (1983) · Zbl 0532.28014 · doi:10.1017/s0143385700001802
[9] de Lima, A.; Smania, D., Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps, J. Inst. Math. Jussieu, 17, 673-733 (2018) · Zbl 1387.37025 · doi:10.1017/s1474748016000177
[10] Ferrari, F., Weyl and Marchaud derivatives: a forgotten history, Mathematics, 6, 6 (2018) · Zbl 1473.26006 · doi:10.3390/math6010006
[11] Jiang, Y.; Ruelle, D., Analyticity of the susceptibility function for unimodal Markovian maps of the interval, Nonlinearity, 18, 2447-2453 (2005) · Zbl 1089.37020 · doi:10.1088/0951-7715/18/6/002
[12] Lyubich, M., Almost every real quadratic map is either regular or stochastic, Ann. Math., 156, 1-78 (2002) · Zbl 1160.37356 · doi:10.2307/3597183
[13] Marchaud, M. A., Sur les dérivées et sur les différences des fonctions de variables réelles, Doctorat d’état (1927) · JFM 53.0232.02
[14] Ruelle, D., Differentiating the absolutely continuous invariant measure of an interval map f with respect to f, Commun. Math. Phys., 258, 445-453 (2005) · Zbl 1080.37046 · doi:10.1007/s00220-004-1267-4
[15] Ruelle, D., Structure and f-dependence of the A.C.I.M. for a unimodal map f is Misiurewicz type, Commun. Math. Phys., 287, 1039-1070 (2009) · Zbl 1202.37008 · doi:10.1007/s00220-008-0637-8
[16] Rychlik, M.; Sorets, E., Regularity and other properties of absolutely continuous invariant measures for the quadratic family, Commun. Math. Phys., 150, 217-236 (1992) · Zbl 0770.58021 · doi:10.1007/bf02096659
[17] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and derivatives, Theory and Applications (1993), London: Gordon and Breach, London · Zbl 0818.26003
[18] Duncan, S., Misiurewicz maps are rare, Commun. Math. Phys., 197, 109-129 (1998) · Zbl 0921.58015 · doi:10.1007/s002200050444
[19] Thunberg, H., Unfolding of chaotic unimodal maps and the parameter dependence of natural measures, Nonlinearity, 14, 323-337 (2001) · Zbl 0985.37033 · doi:10.1088/0951-7715/14/2/308
[20] Tsujii, M., On continuity of Bowen-Ruelle-Sinai measures in families of one dimensional maps, Commun. Math. Phys., 177, 1-11 (1996) · Zbl 0856.58027 · doi:10.1007/bf02102427
[21] Whitney, H., Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., 36, 63 (1934) · JFM 60.0217.01 · doi:10.1090/s0002-9947-1934-1501735-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.