×

Birkhoff spectrum for piecewise monotone interval maps. (English) Zbl 1471.37043

Consider a dynamical system \((X, T)\) and a potential function \(\varphi: X\to \mathbb R\). For \(x\in X\), the Birkhoff average of \(\varphi\) at \(x\) is defined by \[ A(\varphi, x):=\lim\limits_{n\to +\infty} \sum_{i=0}^{n-1}\varphi(T^i(x)) \] whenever the limit exists. The Birkhoff spectrum allows one to study the entropy and the Hausdorff dimension of the level sets \(L_{a}:=\{x\in X:\ A(\varphi, x)=a\}\) of the Birkhoff average. Many interesting results for various dynamical systems have been obtained in the literature by using the Birkhoff spectrum, and many more systems still need to be studied, especially for those ones with nonuniformly hyperbolic behavior. In this direction, the present authors focus on the case when \(T\) is a piecewise monotone interval map with possible parabolic points and try to extend multifractal results obtained in [F. Hofbauer, Fundam. Math. 208, No. 2, 95–121 (2010; Zbl 1192.37056)] for the Lyapunov spectrum and the entropy Birkhoff spectrum by constructing the dimension Birkhoff spectrum. The authors are able to describe the intersections of the level sets with the set of points with positive lower Lyapunov exponent.
Reviewer: Lin Shu (Beijing)

MSC:

37E05 Dynamical systems involving maps of the interval
37C45 Dimension theory of smooth dynamical systems
37A30 Ergodic theorems, spectral theory, Markov operators
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems

Citations:

Zbl 1192.37056

References:

[1] L. Barreira and B. Saussol,Variational principles and mixed multifractal spectra, Trans. Amer. Math. Soc. 353 (2001), 3919-3944. · Zbl 0981.37007
[2] A. Besicovitch,On the sum of digits of real numbers represented in the dyadic system, Math. Ann. 110 (1935), 321-330. · Zbl 0009.39503
[3] P. Billingsley,Hausdorff dimension in probability theory, Illinois J. Math. 4 (1960), 187-209. · Zbl 0098.10602
[4] Y. Chung,Birkhoff spectra for one-dimensional maps with some hyperbolicity, Stoch. Dynam. 10 (2010), 53-75. · Zbl 1183.37037
[5] Y. Chung and H. Takahasi,Multifractal formalism for Benedicks-Carleson quadratic maps, Ergodic Theory Dynam. Systems 34 (2014), 1116-1141. · Zbl 1314.37024
[6] V. Climenhaga and D. Thompson,Equilibrium states beyond specification and the Bowen property, J. London Math. Soc. (2) 87 (2013), 401-427. · Zbl 1276.37023
[7] H. Eggleston,The fractional dimension of a set defined by decimal properties, Quart. J. Math. Oxford Ser. 20 (1949), 31-36. · Zbl 0031.20801
[8] A.-H. Fan, D.-J. Feng and J. Wu,Recurrence, dimension and entropy, J. London Math. Soc. (2) 64 (2001), 229-244. · Zbl 1011.37003
[9] D.-J. Feng and W. Huang,Lyapunov spectrum of asymptotically sub-additive potentials, Comm. Math. Phys. 297 (2010), 1-43. · Zbl 1210.37007
[10] D.-J. Feng, K.-S. Lau and J. Wu,Ergodic limits on the conformal repellers, Adv. Math. 169 (2002), 58-91. · Zbl 1033.37017
[11] K. Gelfert, F. Przytycki and M. Rams,Lyapunov spectrum for multimodal maps, Ergodic Theory Dynam. Systems 36 (2016), 1441-1493. · Zbl 1353.37061
[12] K. Gelfert and M. Rams,The Lyapunov spectrum of some parabolic systems, Ergodic Theory Dynam. Systems 29 (2009), 919-940. · Zbl 1180.37051
[13] F. Hofbauer,Local dimension for piecewise monotonic maps on the interval, Ergodic Theory Dynam. Systems 15 (1995), 1119-1142. · Zbl 0842.58019
[14] F. Hofbauer,Multifractal spectra of Birkhoff averages for a piecewise monotone interval map, Fund. Math. 208 (2010), 95-121. · Zbl 1192.37056
[15] F. Hofbauer and P. Raith,The Hausdorff dimension of an ergodic invariant measure for a piecewise monotonic map of the interval, Canad. Math. Bull. 35 (1992), 84-98. · Zbl 0701.28005
[16] F. Hofbauer and M. Urbański,Fractal properties of invariant subsets for piecewise monotonic maps on the interval, Trans. Amer. Math. Soc. 343 (1994), 659-673. · Zbl 0827.58036
[17] G. Iommi and T. Jordan,Multifractal analysis of Birkhoff averages for countable Markov maps, Ergodic Theory Dynam. Systems 35 (2015), 2559-2586. · Zbl 1356.37006
[18] G. Iommi and T. Jordan,Multifractal analysis for quotients of Birkhoff sums for countable Markov maps, Int. Math. Res. Notices 2015, 460-498. · Zbl 1359.37050
[19] G. Iommi and M. Todd,Dimension theory for multimodal maps, Ann. Henri Poincaré 12 (2011), 591-620. · Zbl 1267.37032
[20] A. Johansson, T. Jordan, A. Öberg and M. Pollicott,Multifractal analysis of non-uniformly hyperbolic systems, Israel J. Math. 177 (2010), 125-144. · Zbl 1214.37029
[21] M. Kesseböhmer and B. Stratmann,A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates, J. Reine Angew. Math. 605 (2007), 133-163. · Zbl 1117.37003
[22] V. Knichal,Dyadische Entwicklungen und Hausdorffsches Mass, Mem. Soc. Roy. Sci. Bohême Cl. Sci. 1933, no. 14, 19 pp. · JFM 59.0989.04
[23] K. Nakaishi,Multifractal formalism for some parabolic maps, Ergodic Theory Dynam. Systems 20 (2000), 843-857. · Zbl 0956.37004
[24] E. Olivier,Structure multifractale d’une dynamique non expansive définie sur un ensemble de Cantor, C.R. Acad. Sci. Paris Sér. I Math. 331 (2000), 605-610. · Zbl 0967.37003
[25] L. Olsen,Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages, J. Math. Pures Appl. 82 (2003), 1591-1649. · Zbl 1035.37025
[26] Y. Pesin and H. Weiss,The multifractal analysis of Birkhoff averages and large deviations, in: Global Analysis of Dynamical Systems, Inst. Phys., Bristol, 2001, 419-431. · Zbl 0996.37021
[27] F. Takens and E. Verbitskiy,On the variational principle for the topological entropy of certain non-compact sets, Ergodic Theory Dynam. Systems 23 (2003), 317-348. · Zbl 1042.37020
[28] H. Weiss,The Lyapunov spectrum for conformal expanding maps and axiom-A surface diffeomorphisms, J. Statist. Phys. 95 (1999), 615-632. · Zbl 0948.37031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.