×

Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. (English) Zbl 1470.37037

Summary: We consider a homoclinic orbit to a saddle fixed point of an arbitrary \(C^\infty\) map \(f\) on \(\mathbb{R}^2\) and study the phenomenon that \(f\) has an infinite family of asymptotically stable, single-round periodic solutions. From classical theory this requires \(f\) to have a homoclinic tangency. We show it is also necessary for \(f\) to satisfy a ‘global resonance’ condition and for the eigenvalues associated with the fixed point, \(\lambda\) and \(\sigma\), to satisfy \(|\lambda\sigma|=1\). The phenomenon is codimension-three in the case \(\lambda\sigma=-1\), but codimension-four in the case \(\lambda\sigma=1\) because here the coefficients of the leading-order resonance terms associated with \(f\) at the fixed point must add to zero. We also identify conditions sufficient for the phenomenon to occur, illustrate the results for an abstract family of maps, and show numerically computed basins of attraction.

MSC:

37C29 Homoclinic and heteroclinic orbits for dynamical systems
37C27 Periodic orbits of vector fields and flows
37C75 Stability theory for smooth dynamical systems
37G25 Bifurcations connected with nontransversal intersection in dynamical systems
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems

References:

[1] C. C. Canavier; D. A. Baxter; J. W. Clark; J. H. Byrne, Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity, J. Neurophysiol, 69, 2252-2257 (1993) · doi:10.1152/jn.1993.69.6.2252
[2] N. G. de Brujin, Asymptotic Methods in Analysis, Dover, New York, 1981. · Zbl 0556.41021
[3] A. Delshams; M. Gonchenko; S. Gonchenko, On dynamics and bifurcations of area-preserving maps with homoclinic tangencies, Nonlinearity, 28, 3027-3071 (2015) · Zbl 1357.37075 · doi:10.1088/0951-7715/28/9/3027
[4] A. Delshams; M. Gonchenko; S. V. Gonchenko, On bifurcations of area-preserving and non-orientable maps with quadratic homoclinic tangencies, Regul. Chaotic Dyn., 19, 702-717 (2014) · Zbl 1342.37045 · doi:10.1134/S1560354714060082
[5] S. N. Elaydi, Discrete Chaos with Applications in Science and Engineering, Chapman and Hall., Boca Raton, FL, 2008. · Zbl 1153.39002
[6] U. Feudel, Complex dynamics in multistable systems, Int. J. Bifurcation Chaos, 18, 1607-1626 (2008) · doi:10.1142/S0218127408021233
[7] J. A. C. Gallas, Dissecting shrimps: Results for some one-dimensional physical systems, Physica A, 202, 196-223 (1994)
[8] J. M. Gambaudo; C. Tresser, Simple models for bifurcations creating horseshoes, J. Stat. Phys., 32, 455-476 (1983) · Zbl 0587.58034 · doi:10.1007/BF01008950
[9] N. K. Gavrilov; L. P. Silnikov, On three dimensional dynamical systems close to systems with structurally unstable homoclinic curve. I, Mat. Sb. (N.S.), 88, 475-492 (1972) · Zbl 0251.58005
[10] N. K. Gavrilov; L. P. Silnikov, On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. II, Mat. Sb. (N.S.), 90, 139-156 (1973) · Zbl 0258.58009
[11] M. S. Gonchenko; S. V. Gonchenko, On cascades of elliptic periodic points in two-dimensional symplectic maps with homoclinic tangencies, Regul. Chaotic Dyns., 14, 116-136 (2009) · Zbl 1229.37054 · doi:10.1134/S1560354709010080
[12] S. V. Gonchenko; L. P. Shil’nikov, Arithmetic properties of topological invariants of systems with nonstructurally-stable homoclinic trajectories, Ukr. Math. J., 39, 15-21 (1987) · Zbl 0635.58025 · doi:10.1007/BF01056417
[13] S. V. Gonchenko; L. P. Shilnikov, On two-dimensional area-preserving maps with homoclinic tangencies that have infinitely many generic elliptic periodic points, J. Math. Sci. (N. Y.), 128, 2767-2773 (2005) · Zbl 1120.37041 · doi:10.1007/s10958-005-0228-6
[14] S. V. Gonchenko; L. P. Shil’nikov; D. V. Turaev, Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos, 6, 15-31 (1996) · Zbl 1055.37578 · doi:10.1063/1.166154
[15] V. S. Gonchenko; Yu. A. Kuznetsov; H. G. E. Meijer, Generalized Hénon map and bifurcations of homoclinic tangencies, SIAM J. Appl. Dyn. Syst., 4, 407-436 (2005) · Zbl 1090.37036 · doi:10.1137/04060487X
[16] P. Hirschberg; C. R. Laing, Successive homoclinic tangencies to a limit cycle, Physica D, 89, 1-14 (1995) · Zbl 0886.34028 · doi:10.1016/0167-2789(95)00211-1
[17] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Marcel Dekker, Inc., New York, 2002. · Zbl 1014.39001
[18] C. Mira, L. Gardini, A. Barugola and J. C. Cathala, Chaotic Dynamics in Two Dimensional Noninvertible Maps, World Scientific, 1996. · Zbl 0906.58027
[19] S. E. Newhouse, Diffeomorphisms with infinitely many sinks, Topology, 13, 9-18 (1974) · Zbl 0275.58016 · doi:10.1016/0040-9383(74)90034-2
[20] C. N. Ngonghala, U. Feudel and K. Showalter, Extreme multistability in a chemical model system, Phys. Rev. E, 83 (2011), 056206.
[21] S. Rahmstorf; J. Willebrand, The role of temperature feedback in stabilizing the thermohaline circulation, J. Phys. Oceanogr, 25, 787-805 (1995) · doi:10.1175/1520-0485(1995)0252.0.CO;2
[22] S. Rahmstorf; J. Willebrand, The role of temperature feedback in stabilizing the thermohaline circulation, J. Phys. Oceanogr, 25, 787-805 (1995) · Zbl 1073.37001 · doi:10.1175/1520-0485(1995)025<0787:TROTFI>2.0.CO;2
[23] R. C. Robinson, An Introduction to Dynamical Systems. Continuous and Discrete, Prentice Hall, Upper Saddle River, NJ, 2004. · Zbl 1073.37001
[24] L. P. Shil’nikov, A. L. Shil’nikov, D. V. Turaev and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part I, volume 4, World Scientific Singapore, 1998. · Zbl 1301.37027
[25] D. J. W. Simpson, Scaling laws for large numbers of coexisting attracting periodic solutions in the border-collision normal form, Int. J. Bifurcation Chaos, 24 (2014), 1450118, 28pp. · Zbl 1296.37029
[26] D. J. W. Simpson, Sequences of periodic solutions and infinitely many coexisting attractors in the border-collision normal form, Int. J. Bifurcation Chaos, 24 (2014), 1430018, 18pp. · Zbl 1441.37056
[27] D. J. W. Simpson, Unfolding codimension-two subsumed homoclinic connections in two-dimensional piecewise-linear maps, Int. J. Bifurcation Chaos, 30 (2020), 203006, 12pp. · Zbl 1362.37059
[28] D. J. W. Simpson and C. P. Tuffley, Subsumed homoclinic connections and infinitely many coexisting attractors in piecewise-linear maps, Int. J. Bifurcation Chaos, 27 (2017), 1730010, 20 pp. · Zbl 0083.31406 · doi:10.2307/2372774
[29] S. Sternberg, On the structure of local homeomorphisms of Euclidean \(n\)-space, II, Amer. J. Math., 80, 623-631 (1958) · Zbl 0083.31406 · doi:10.2307/2372774
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.