×

Asymptotic escape rates and limiting distributions for multimodal maps. (English) Zbl 1472.37024

Summary: We consider multimodal maps with holes and study the evolution of the open systems with respect to equilibrium states for both geometric and Hölder potentials. For small holes, we show that a large class of initial distributions share the same escape rate and converge to a unique absolutely continuous conditionally invariant measure; we also prove a variational principle connecting the escape rate to the pressure on the survivor set, with no conditions on the placement of the hole. Finally, introducing a weak condition on the centre of the hole, we prove scaling limits for the escape rate for holes centred at both periodic and non-periodic points, as the diameter of the hole goes to zero.

MSC:

37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37E05 Dynamical systems involving maps of the interval

References:

[1] Afraimovich, V. S. and Bunimovich, L. A.. Which hole is leaking the most: a topological approach to study open systems. Nonlinearity23(3) (2010), 643-656. · Zbl 1186.37015
[2] Altmann, E. G., Portela, J. S. E. and Tél, T.. Leaking chaotic systems. Rev. Mod. Phys.85 (2013), 869-918.
[3] Bruin, H., Demers, M. F. and Melbourne, I.. Existence and convergence properties of physical measures for certain dynamical systems with holes. Ergod. Th. & Dynam. Sys.30 (2010), 687-728. · Zbl 1202.37058
[4] Bruin, H., Demers, M. F. and Todd, M.. Hitting and escaping statistics: mixing, targets and holes. Adv. Math.328 (2018), 1263-1298. · Zbl 1388.37008
[5] Bruin, H., Luzzatto, S. and Van Strien, S.. Decay of correlations in one-dimensional dynamics. Ann. Sci. Éc. Norm. Supér.36 (2003), 621-646. · Zbl 1039.37021
[6] Bruin, H., Rivera-Letelier, J., Shen, W. and Van Strien, S.. Large derivatives, backward contraction and invariant densities for interval maps. Invent. Math.172 (2008), 509-533. · Zbl 1138.37019
[7] Bahsoun, W. and Vaienti, S.. Metastability of certain intermittent maps. Nonlinearity25(1) (2012), 107-124. · Zbl 1243.37001
[8] Bahsoun, W. and Vaienti, S.. Escape rates formulae and metastability for randomly perturbed maps. Nonlinearity26(5) (2013), 1415-1438. · Zbl 1275.37003
[9] Bunimovich, L. A. and Yurchenko, A.. Where to place a hole to achieve a maximal escape rate. Israel J. Math.182(1) (2011), 229-252. · Zbl 1236.37004
[10] Chernov, N. and Markarian, R.. Ergodic properties of Anosov maps with rectangular holes. Bol. Soc. Bras. Mat.28 (1997), 271-314. · Zbl 0893.58035
[11] Collet, P., Martínez, S. and Schmitt, B.. The Yorke-Pianigiani measure and the asymptotic law on the limit Cantor set of expanding systems. Nonlinearity7 (1994), 1437-1443. · Zbl 0806.58037
[12] Chernov, N., Markarian, R. and Troubetzkoy, S.. Conditionally invariant measures for Anosov maps with small holes. Ergod. Th. & Dynam. Sys.18 (1998), 1049-1073. · Zbl 0982.37011
[13] Demers, M. F.. Markov extensions and conditionally invariant measures for certain logistic maps with small holes. Ergod. Th. & Dynam. Sys.25 (2005), 1139-1171. · Zbl 1098.37035
[14] Demers, M. F.. Dispersing billiards with small holes. Ergodic Theory, Open Dynamics and Coherent Structures. Eds. Bahsoun, W., Bose, C. and Froyland, G.. Springer, New York, 2014, pp. 137-170.
[15] Demers, M. F. and Fernandez, B.. Escape rates and singular limiting distributions for intermittent maps with holes. Trans. Amer. Math. Soc.368 (2016), 4907-4932. · Zbl 1354.37034
[16] Dettmann, C. P. and Georgiou, O.. Survival probability for the stadium billiard. Physica D238 (2009), 2395-2403. · Zbl 1180.37046
[17] Dettmann, C. P., Georgiou, O., Knight, G. and Klages, R.. Dependence of chaotic diffusion on the size and position of holes. Chaos22 (2012), 023132. · Zbl 1331.37042
[18] Demers, M. F., Ianzano, C., Mayer, P., Morfe, P. and Yoo, E.. Limiting distributions for countable state topological Markov chains with holes. Discrete Contin. Dyn. Sys.37(1) (2017), 105-130. · Zbl 1418.37022
[19] Dettmann, C. P. and Rahman, M. R.. Survival probability for open spherical billiards. Chaos24 (2014), 043130. · Zbl 1361.37039
[20] Dobbs, N. and Todd, M.. Free energy jumps up. Preprint, arXiv:1512.09245.
[21] Dolgopyat, D. and Wright, P.. The diffusion coefficient for piecewise expanding maps of the interval with metastable states. Stochastics Dyn.12 (2012), paper 1150005. · Zbl 1312.60089
[22] Demers, M. F. and Todd, M.. Equilibrium states, pressure and escape for multimodal maps with holes. Israel J. Math.221(1) (2017), 367-424. · Zbl 1377.37055
[23] Demers, M. F. and Todd, M.. Slow and fast escape for open intermittent maps. Comm. Math. Phys.351(2) (2017), 775-835. · Zbl 1380.37007
[24] Demers, M. F. and Wright, P.. Behavior of the escape rate function in hyperbolic dynamical systems. Nonlinearity25 (2012), 2133-2150. · Zbl 1255.37007
[25] Demers, M. F., Wright, P. and Young, L.-S.. Escape rates and physically relevant measures for billiards with small holes. Comm. Math. Phys.294 (2010), 353-388. · Zbl 1225.37051
[26] Freitas, A. C. M., Freitas, J. M. and Todd, M.. The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics. Comm. Math. Phys.321 (2013), 483-527. · Zbl 1354.37015
[27] Freitas, A. C. M., Freitas, J. M. and Todd, M.. Speed of convergence for laws of rare events and escape rates. Stochastic Process. Appl.125 (2015), 1653-1687. · Zbl 1329.37006
[28] Ferrari, P. A., Kesten, H., Martínez, S. and Picco, P.. Existence of quasi-stationary distributions. A renewal dynamical approach. Ann. Probab.23 (1995), 501-521. · Zbl 0827.60061
[29] Froyland, G., Murray, R. and Stancevic, O.. Spectral degeneracy and escape dynamics for intermittent maps with a hole. Nonlinearity24 (2011), 2435-2463. · Zbl 1267.37029
[30] Ferguson, A. and Pollicott, M.. Escape rates for Gibbs measures. Ergod. Th. & Dynam. Sys.32 (2012), 961-988. · Zbl 1263.37004
[31] Gonzalez-Tokman, C., Hunt, B. and Wright, P.. Approximating invariant densities for metastable systems. Ergod. Th. & Dynam. Sys.34 (2014), 1230-1272.
[32] Hofbauer, F.. Piecewise invertible dynamical systems. Probab. Theory Relat. Fields72 (1986), 359-386. · Zbl 0578.60069
[33] Hofbauer, F. and Raith, P.. Topologically transitive subsets of piecewise monotonic maps, which contain no periodic points. Monatsh. Math.107 (1989), 217-239. · Zbl 0676.54049
[34] Iommi, G. and Todd, M.. Natural equilibrium states for multimodal maps. Comm. Math. Phys.300 (2010), 65-94. · Zbl 1211.37031
[35] Iommi, G. and Todd, M.. Thermodynamic formalism for interval maps: inducing schemes. Dyn. Syst.28 (2013), 354-380. · Zbl 1358.37072
[36] Keller, G.. Lifting measures to Markov extensions. Monatsh. Math.108 (1989), 183-200. · Zbl 0712.28008
[37] Keller, G. and Liverani, C.. Stability of the spectrum for transfer operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (4)XXVIII (1999), 141-152. · Zbl 0956.37003
[38] Keller, G. and Liverani, C.. Rare events, escape rates and quasistationarity: some exact formulae. J. Stat. Phys.135(3) (2009), 519-534. · Zbl 1179.37010
[39] Liverani, C. and Maume-Deschamps, V.. Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set. Ann. Inst. Henri Poincaré Probab. Stat.39 (2003), 385-412. · Zbl 1021.37002
[40] Li, H. and Rivera-Letelier, J.. Equilibrium states of weakly hyperbolic one-dimensional maps for Hölder potentials. Comm. Math. Phys.328 (2014), 397-419. · Zbl 1375.37097
[41] De Melo, W. and Van Strien, S.. One-Dimensional Dynamics. Springer, Berlin, 1993. · Zbl 0791.58003
[42] Przytycki, F. and Rivera-Letelier, J.. Geometric pressure for multimodal maps of the interval. Mem. Amer. Math. Soc.259(1246). · Zbl 1443.37003
[43] Pollicott, M. and Urbanski, M.. Open Conformal Systems and Perturbations of Transfer Operators. Springer, Berlin, 2018. · Zbl 1397.37001
[44] Pianigiani, G. and Yorke, J.. Expanding maps on sets which are almost invariant: decay and chaos. Trans. Amer. Math. Soc.252 (1979), 351-366. · Zbl 0417.28010
[45] Rivera-Letelier, J. and Shen, W.. Statistical properties of one-dimensional maps under weak hyperbolicity assumptions. Ann. Sci. Éc. Norm. Supér. (4)47 (2014), 1027-1083. · Zbl 1351.37195
[46] Vere-Jones, D.. Geometric ergodicity in denumerable Markov chains. Quart. J. Math13 (1962), 7-28. · Zbl 0104.11805
[47] Young, L. S.. Some large deviation results for dynamical systems. Trans. Amer. Math. Soc.318 (1990), 525-543. · Zbl 0721.58030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.