×

On right-equivalence. (English) Zbl 0593.58014

Study of G-equivalence of germs (in particular for \(G=A\), C, H, L, R) is the basis of singularity theory. A key invariant is the locus of instability. Equivalence of germs implies equivalence of the corresponding loci, and also equivalence of the restriction of the germs to their instability loci, so that a natural approach to classification is to classify possible types of restriction to a given locus. This point of view is taken up in this paper for R; the instability locus in this case is the critical set.
A \(C^{\tau}\) map-germ f: (N,x\({}_ 0)\to (P,y_ 0)\) has non- degenerate critical set if (i) \(J(f)=\{\phi \in C_ N^{\tau}|\) \(\phi\) vanishes on \(\Sigma\) (f\(\}\), (ii) \(\Sigma\) (f) has dimension p-1 in N. Theorem. Let f: (N,x\({}_ 0)\to (P,y_ 0)\) be a map-germ with non-degenerate critical set. Let g: (N,x\({}_ 0)\to (P,y_ 0)\) be a map-germ satisfying: (\(\alpha)\) \(\Sigma\) (f)\(\subset \Sigma (g)\); (\(\beta)\) \(f| \Sigma (f)=g| \Sigma (f)\); (\(\gamma)\) Im Tg\({}_ x\subset Im Tf_ x\) for x in some dense subset of \(\Sigma\) (f). (i) Suppose that f has cokernel rank \(>1\), or that f has cokernel rank 1 and zero full second intrinsic derivative. Then f,g are \(R_{J(f)}\)- equivalent. (ii) Suppose that f has cokernel rank 1 and non-zero intrinsic derivative. Then the following are equivalent: (a) f,g are \(R_{J(f)}\)-equivalent. (b) \(j^ 2f\), \(j^ 2g\) are R-equivalent. (c) \(\Sigma (f)=\Sigma (g)\), g has non-degenerate critical set, and in the \(C^{\infty}\) and \({\mathbb{R}}\)-analytic cases the Hessians H(f), H(g) have the same index. (d) g has cokernel rank 1 and the Hessians H(f), H(g) have the same rank, and, in the \(C^{\infty}\) and \({\mathbb{R}}\)-analytic cases, the same index. If f is also generically finite-to-one on its critical set, then (\(\gamma)\) is redundant, being implied by (\(\alpha)\), (\(\beta)\).
The converses to the above \(R_{J(f)}\)-equivalence results also hold; for, as is easily seen, if map-germs f, g are \(R_{I(\Sigma (f))}\)- equivalent then f,g satisfy (\(\alpha)\), (\(\beta)\), (\(\gamma)\) (indeed with equality in (\(\alpha)\), (\(\gamma)\)).
A generalization of this theorem is given for arbitrary smooth or analytic map-germs.

MSC:

58C25 Differentiable maps on manifolds
58K99 Theory of singularities and catastrophe theory
57R45 Singularities of differentiable mappings in differential topology
32S05 Local complex singularities

References:

[1] Arnold, V.I.: Local normal forms of functions. Invent. Math.35, 87-109 (1976) · Zbl 0336.57022 · doi:10.1007/BF01390134
[2] Boardman, J.M.: Singularities of differentiable maps. Publ. Math., Inst. Hautes Etud. Sci.33, 21-57 (1967) · Zbl 0165.56803 · doi:10.1007/BF02684585
[3] Damon, J.: Finite determinacy and topological triviality. I. Invent. Math.62, 299-324 (1980) · Zbl 0489.58003 · doi:10.1007/BF01389162
[4] Gaffney, T., du Plessis, A.: More on the determinacy of smooth map-germs. Invent. Math66, 137-163 (1982) · Zbl 0489.58004 · doi:10.1007/BF01404761
[5] Gaffney, T., du Plessis, A., Wilson, L.: On map-germs determined their discriminants. In preparation · Zbl 0891.58006
[6] Golubitsky, M., Guillemin, V.: Contact equivalence for Lagrangean manifolds. Adv. Math.15, 375-387 (1975) · Zbl 0295.57018 · doi:10.1016/0001-8708(75)90143-7
[7] Hörmander, L.: Fourier integral operators. I. Acta Math.127, 79-183 (1971) · Zbl 0212.46601 · doi:10.1007/BF02392052
[8] Mather, J.N.: Stability ofC ? mappings. VI. Proc. Liverpool Sings Symp. I. (ed. C.T.C. Wall). Lecture Notes in Mathematics192. Berlin, Heidelberg, New York: Springer 1971
[9] Mond, D.: The classification of germs of maps from ?2 to ?3. Proc. London Math. Soc.50, 333-369 (1985) · Zbl 0557.58006 · doi:10.1112/plms/s3-50.2.333
[10] Mond, D.: Map germs with a cuspidal edge. Ch. IV of Mond’s Ph.D. thesis, Univ. of Liverpool (1982)
[11] Northcott, D.G.: Finite free resolutions. Cambridge: University Press 1976 · Zbl 0328.13010
[12] du Plessis, A.: On the determinacy of smooth map-germs. Invent. Math.58, 107-160 (1980) · Zbl 0446.58004 · doi:10.1007/BF01403166
[13] du Plessis, A.: On theA-classification of smooth map-germs. In preparation · Zbl 0446.58004
[14] du Plessis, A.: On instability spaces. In preparation · Zbl 0559.58006
[15] du Plessis, A., Wilson, L.: On symmetries of map-germs. In preparation · Zbl 0593.58014
[16] Scharlau, W.: Quadratic Forms. Queen’s papers on pure and applied mathematics, 22, Kingston, Ontario (1969) · Zbl 0194.35104
[17] Siersma, D.: Isolated line singularities. AMS Proc. Symp. Pure Math.40, II, 485-496 (1983) · Zbl 0514.32007
[18] Tougeron, J.C.: Ideaux de fonctions differentiables. Ergebnisse der Mathematik 71. Berlin Heidelberg New York 1972 · Zbl 0251.58001
[19] Wall, C.T.C.: Finite determinancy of smooth map-germs. Bull. Lond. Math. Soc.13, 481-539 (1981) · doi:10.1112/blms/13.6.481
[20] Wall, C.T.C.: A splitting theorem for maps into ?2. Math. Ann.259, 443-453 (1982) · doi:10.1007/BF01466051
[21] Wall, C.T.C.: Classification of unimodal isolated singularities of complete intersections. AMS Proc. Symp. Pure Math.40, II, 625-640 (1983) · Zbl 0519.58013
[22] Wirthmüller, K.: Singularities determined by their discriminant. Math. Ann.252, 237-245 (1980) · doi:10.1007/BF01420086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.