×

On quasisymmetric embeddings of the Brownian map and continuum trees. (English) Zbl 1478.60046

Summary: The Brownian map is a model of random geometry on the sphere and as such an important object in probability theory and physics. It has been linked to Liouville Quantum Gravity and much research has been devoted to it. One open question asks for a canonical embedding of the Brownian map into the sphere or other, more abstract, metric spaces. Similarly, Liouville Quantum Gravity has been shown to be “equivalent” to the Brownian map but the exact nature of the correspondence (i.e. embedding) is still unknown. In this article we show that any embedding of the Brownian map or continuum random tree into \(\mathbb{R}^d,\mathbb{S}^d,\mathbb{T}^d\), or more generally any doubling metric space, cannot be quasisymmetric. We achieve this with the aid of dimension theory by identifying a metric structure that is invariant under quasisymmetric mappings (such as isometries) and which implies infinite Assouad dimension. We show, using elementary methods, that this structure is almost surely present in the Brownian continuum random tree and the Brownian map. We further show that snowflaking the metric is not sufficient to find an embedding and discuss continuum trees as a tool to studying “fractal functions”.

MSC:

60D05 Geometric probability and stochastic geometry
28A80 Fractals
05C80 Random graphs (graph-theoretic aspects)
37C45 Dimension theory of smooth dynamical systems
83C45 Quantization of the gravitational field

References:

[1] Angelevska, J.; Käenmäki, A.; Troscheit, S., Self-conformal sets with positive Hausdorff measure, Bull. Lond. Math. Soc., 52, 1, 200-223 (2020) · Zbl 1441.28003 · doi:10.1112/blms.12320
[2] Aldous, D., The continuum random tree I, Ann. Probab., 19, 1, 1-28 (1991) · Zbl 0722.60013 · doi:10.1214/aop/1176990534
[3] Aldous, D.: The continuum random tree II. An overview, Stochastic analysis. London Mathematical Society. Lecture Note Se., 167, Cambridge University Press, 23-70 (1991) · Zbl 0791.60008
[4] Aldous, D., The continuum random tree III, Ann. Probab., 21, 1, 248-289 (1993) · Zbl 0791.60009 · doi:10.1214/aop/1176989404
[5] Assouad, P.: Espaces métriques, plongements, facteurs, Thèse de doctorat d’État, Publ. Math. Orsay 223-7769, Univ. Paris XI, Orsay (1977) · Zbl 0396.46035
[6] Bárány, B.; Kiss, G.; Kolossváry, I., Pointwise regularity of parametrized affine zipper fractal curves, Nonlinearity, 31, 5, 1705-1733 (2018) · Zbl 1392.28009 · doi:10.1088/1361-6544/aaa497
[7] Bishop, CJ; Peres, Y., Fractals in Probability and Analysis (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1390.28012 · doi:10.1017/9781316460238
[8] David, G., Snipes, M.: A constructive proof of the Assouad embedding theorem with bounds on the dimension, hal-00751548 (2012) · Zbl 1261.53039
[9] Falconer, K., Fractal Geometry (2014), Chichester: Wiley, Chichester · Zbl 1285.28011
[10] Fraser, J.M.: Assouad dimension and fractal geometry. Cambridge University Press, Tracts in Mathematics Series, 222 (2020) · Zbl 1467.28001
[11] Fraser, J.M.: Interpolating between dimensions. Proceedings of Fractal Geometry and Stochastics VI, Birkhäuser, Progress in Probability (2019)
[12] Fraser, JM; Miao, J-J; Troscheit, S., The Assouad dimension of randomly generated fractals, Ergodic Theory Dyn. Syst., 38, 3, 982-1011 (2018) · Zbl 1392.37024 · doi:10.1017/etds.2016.64
[13] Fraser, J.M., Troscheit, S.: The Assouad spectrum of random self-affine carpets. Ergodic Theory Dyn. Syst. (to appear) (2020). arXiv:1805.04643
[14] Fraser, JM; Yu, H., Arithmetic patches, weak tangents, and dimension, Bull. Lond. Math. Soc., 50, 85-95 (2018) · Zbl 1429.11022 · doi:10.1112/blms.12112
[15] Gwynne, E., Miller, J., Sheffield, S.: The Tutte embedding of the Poisson-Voronoi tesselation of the Brownian disk converges to \(\sqrt{8/3} \)-Liouville quantum gravity. Ann. Probab. (to appear). (2018). arXiv:1809.02091v3 · Zbl 1441.60015
[16] Käenmäki, A.; Ojala, T.; Rossi, E., Rigidity of quasisymmetric mappings on self-affine carpets, Int. Math. Res. Not. IMRN, 12, 3769-3799 (2018) · doi:10.1093/imrn/rnw336
[17] Le Gall, J-F, Uniqueness and universality of the Brownian map, Ann. Probab., 41, 4, 2880-2960 (2013) · Zbl 1282.60014
[18] Le Gall, J-F, Random geometry on the sphere, Proc. Int. Congr. Math. Seoul, 2014, 421-442 (2014) · Zbl 1373.60025
[19] Lin, P., Rohde, S.: Conformal weldings of dendrites, preprint (2019)
[20] Mackay, J.M., Tyson, J.T.: Conformal Dimension: Theory and Application, University Lecture Series 54, AMS (2010) · Zbl 1201.30002
[21] Miermont, G., The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., 210, 319-401 (2013) · Zbl 1278.60124 · doi:10.1007/s11511-013-0096-8
[22] Miller, J.: Liouville quantum gravity as a metric space and a scaling limit. In: Proceedings of the International Congress of Mathematicians · Zbl 1458.60057
[23] Miller, J.; Sheffield, S., Liouville quantum gravity and the Brownian map I: the QLE(8/3,0) metric, Invent. math., 219, 75-152 (2020) · Zbl 1437.83042 · doi:10.1007/s00222-019-00905-1
[24] Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map II: geodesics and continuity of the embedding, preprint. (2016) 119 pp. arXiv:1605.03563
[25] Miller, J., Sheffield, S.: Liouville quantum gravity and the Brownian map III: the conformal structure is determined, Probab. Theory Related Fields (to appear). (2016) 32 pp. arXiv:1608.05391
[26] Stroock, DW, Probability Theory—an analytic view (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1223.60001 · doi:10.1017/CBO9780511974243
[27] Troscheit, S.: The quasi-Assouad dimension of stochastically self-similar sets. Proc. R. Soc. Edinb. Sect. A 1-15 (2019) · Zbl 1437.28014
[28] Troscheit, S.: Assouad spectrum thresholds for some random constructions, Canad. Math. Bull., (2019), 1-20, doi:10.4153/S0008439519000547. · Zbl 1437.28015
[29] Tyson, JT, Lowering the Assouad dimension by quasisymmetric mappings, Illinois J. Math., 45, 2, 641-656 (2001) · Zbl 0989.30017 · doi:10.1215/ijm/1258138361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.