×

Lyapunov stability of a rigid body with two frictional contacts. (English) Zbl 1373.74050

Summary: Lyapunov stability of a mechanical system means that the dynamic response stays bounded in an arbitrarily small neighborhood of a static equilibrium configuration under small perturbations in positions and velocities. This type of stability is highly desired in robotic applications that involve multiple unilateral contacts. Nevertheless, Lyapunov stability analysis of such systems is extremely difficult, because even small perturbations may result in hybrid dynamics where the solution involves many non-smooth transitions between different contact states. This paper concerns Lyapunov stability analysis of a planar rigid body with two frictional unilateral contacts under inelastic impacts, for a general class of equilibrium configurations under a constant external load. The hybrid dynamics of the system under contact transitions and impacts is formulated, and a Poincaré map at two-contact states is introduced. Using invariance relations, this Poincaré map is reduced into two semi-analytic scalar functions that entirely encode the dynamic behavior of solutions under any small initial perturbation. These two functions enable determination of Lyapunov stability or instability for almost any equilibrium state. The results are demonstrated via simulation examples and by plotting stability and instability regions in two-dimensional parameter spaces that describe the contact geometry and external load.

MSC:

74H55 Stability of dynamical problems in solid mechanics
70E18 Motion of a rigid body in contact with a solid surface
70J25 Stability for problems in linear vibration theory
74M20 Impact in solid mechanics
74M10 Friction in solid mechanics

References:

[1] Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231-247 (1997) · Zbl 0899.70005 · doi:10.1023/A:1008292328909
[2] Back, A., Guckenheimer, J., Myers, M.: A dynamical simulation facility for hybrid systems. Lect. Notes Comput. Sci. 736, 255-267 (1993) · doi:10.1007/3-540-57318-6_32
[3] Ballard, P., Basseville, S.: Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem. ESAIM Math. Model. Numer. Anal. 39(1), 59-77 (2005) · Zbl 1089.34010 · doi:10.1051/m2an:2005004
[4] Basseville, S., Leger, A., Pratt, E.: Investigation of the equilibrium states and their stability for a simple model with unilateral contact and Coulomb friction. Arch. Appl. Mech. 73(5-6), 409-420 (2003) · Zbl 1068.74585 · doi:10.1007/s00419-003-0300-y
[5] Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38(3), 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[6] Blumentals, A., Brogliato, B., Bertails-Descoubes, F.: The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multibody Syst. Dyn. 38(1), 43-76 (2016) · Zbl 1372.70044 · doi:10.1007/s11044-016-9527-6
[7] Brogliato, B.: Nonsmooth Mechanics. Springer, Berlin (1999) · Zbl 0917.73002 · doi:10.1007/978-1-4471-0557-2
[8] Brogliato, B.: Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings. Syst. Control Lett. 51(5), 343-353 (2004) · Zbl 1157.93455 · doi:10.1016/j.sysconle.2003.09.007
[9] Brogliato, B., Zhang, H., Liu, C.: Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody Syst. Dyn. 27(3), 351-382 (2012) · Zbl 1344.70029 · doi:10.1007/s11044-012-9301-3
[10] Champneys, A.R., Varkonyi, P.L.: The Painlevé paradox in contact mechanics. IMA J. Appl. Math. 81(3), 538-588 (2016) · Zbl 1408.70006 · doi:10.1093/imamat/hxw027
[11] Chatterjee, A., Ruina, A.: A new algebraic rigid body collision law based on impulse space considerations. ASME J. Appl. Mech. 65(4), 939-951 (1998) · doi:10.1115/1.2791938
[12] Dimitrakopoulos, E.G., DeJong, M.J.: Revisiting the rocking block: closed-form solutions and similarity laws. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 468(2144), 2294-2318 (2012) · doi:10.1098/rspa.2012.0026
[13] DiBernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems: Theory and Applications. Springer, Berlin (2008) · Zbl 1146.37003
[14] Fen, F., Shoham, M., Longman, R.: Lyapunov stability of force-controlled grasps with a multifingered hand. Int. J. Robot. Res. 15(2), 137-154 (1996) · doi:10.1177/027836499601500203
[15] Filippov, A.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic Publishers, Dordrecht (1988) · Zbl 0664.34001 · doi:10.1007/978-94-015-7793-9
[16] Gamus, B., Or, Y.: Analysis of dynamic bipedal robot locomotion with stick-slip transitions. SIAM J. Appl. Dyn. Syst. 14(2), 609-642 (2015) · Zbl 1342.70018 · doi:10.1137/140956816
[17] Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A/Solids 18(4), 653-677 (1999) · Zbl 0962.70019 · doi:10.1016/S0997-7538(99)00144-8
[18] Glocker, C., Pfeiffer, F.: Multiple impacts with friction in rigid multibody systems. Nonlinear Dyn. 7(4), 471-497 (1995) · doi:10.1007/BF00121109
[19] Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28-93 (2009) · Zbl 1395.93001 · doi:10.1109/MCS.2008.931718
[20] Goebel, R., Teel, A.R. : Lyapunov characterization of Zeno behavior in hybrid systems. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 2752-2757 (2008)
[21] Hong, Y., Xu, Y., Huang, J.: Finite-time control for robot manipulators. Syst. Control Lett. 46(4), 243-253 (2002) · Zbl 0994.93041 · doi:10.1016/S0167-6911(02)00130-5
[22] Howard, W.S., Kumar, V.: On the stability of grasped objects. IEEE Trans. Robot. Autom. 12(6), 904-917 (1996) · doi:10.1109/70.544773
[23] Hurmuzlu, Y., Génot, F., Brogliato, B.: Modeling, stability and control of biped robots—a general framework. Automatica 40(10), 1647-1664 (2004) · Zbl 1155.93393 · doi:10.1016/j.automatica.2004.01.031
[24] Ivanov, A.P.: The problem of constrained impact. J. Appl. Math. Mech. 61(3), 341-353 (1997) · Zbl 0884.70020 · doi:10.1016/S0021-8928(97)00044-0
[25] Lamperski, A., Ames, A.D.: Lyapunov theory for Zeno stability. IEEE Trans. Autom. Control 58(1), 100-112 (2013) · Zbl 1369.93534 · doi:10.1109/TAC.2012.2208292
[26] Leine, R., Van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints, vol. 36. Springer, Berlin (2007) · Zbl 1143.70001
[27] Leine, R.I.: The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dyn. 59, 173-182 (2010) · Zbl 1183.70002 · doi:10.1007/s11071-009-9530-z
[28] Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A/Solids 21, 869-896 (2002) · Zbl 1023.70009 · doi:10.1016/S0997-7538(02)01231-7
[29] Leine, R.I., Heimsch, T.F.: Global uniform symptotic attractive stability of the non-autonomous bouncing ball system. Phys. D Nonlinear Phenom. 241(22), 2029-2041 (2012) · doi:10.1016/j.physd.2011.04.013
[30] Leine, R.I., van de Wouw, N.: Stability properties of equilibrium sets of nonlinear mechanical systems with dry friction and impact. Nonlinear Dyn. 51, 551-583 (2008) · Zbl 1170.70340 · doi:10.1007/s11071-007-9244-z
[31] Lotstedt, P.: Coulomb friction in two-dimensional rigid body systems. Zeitschrift fur Angewandte Mathematik und Mechanik 61, 605-615 (1981) · Zbl 0495.73095 · doi:10.1002/zamm.19810611202
[32] Luck, J.M., Mehta, A.: Bouncing ball with a finite restitution: chattering, locking, and chaos. Phys. Rev. E 48(5), 3988 (1993) · doi:10.1103/PhysRevE.48.3988
[33] Lyapunov, A.M.: Stability of Motion. Academic Press, New York (1966) · Zbl 0161.06303
[34] Mason, M.T., Wang, Y.: On the inconsistency of rigid-body frictional planar mechanics. In: IEEE International Conference on Robotics and Automation, pp. 524-528 (1988)
[35] Morris, B., Grizzle, J.W.: Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots. IEEE Trans. Autom. Control 54(8), 1751-1764 (2009) · Zbl 1367.93404 · doi:10.1109/TAC.2009.2024563
[36] Nguyen, V.-D.: Constructing stable grasps. Int. J. Robot. Res. 8(1), 27-37 (1988)
[37] Nordmark, A., Dankowicz, H., Champneys, A.: Friction-induced reverse chatter in rigid-body mechanisms with impacts. IMA J. Appl. Math. 76(1), 85-119 (2011) · Zbl 1385.70030 · doi:10.1093/imamat/hxq068
[38] Or, Y.: Painlevé’s paradox and dynamic jamming in simple models of passive dynamic walking. Regul. Chaotic Dyn. 19(1), 64-80 (2014) · Zbl 1353.70006 · doi:10.1134/S1560354714010055
[39] Or, Y., Ames, A.D.: Stability and completion of Zeno equilibria in Lagrangian hybrid systems. IEEE Trans. Autom. Control 56(6), 1322-1336 (2011) · Zbl 1368.93476 · doi:10.1109/TAC.2010.2080790
[40] Or, Y., Rimon, E.: Computation and graphical characterization of robust multiple-contact postures in two-dimensional gravitational environments. Int. J. Robot. Res. 25(11), 1071-1086 (2006) · doi:10.1177/0278364906072038
[41] Or, Y., Rimon, E.: On the hybrid dynamics of planar mechanisms supported by frictional contacts. I: Necessary conditions for stability. In: IEEE International Conference on Robotics and Automation, pp. 1213-1218 (2008)
[42] Or, Y., Rimon, E.: On the hybrid dynamics of planar mechanisms supported by frictional contacts. II: Stability of two-contact rigid body postures. In: IEEE International Conference on Robotics and Automation, pp. 1219-1224 (2008)
[43] Or, Y., Rimon, E.: Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion. Nonlinear Dyn. 67, 1647-1668 (2012) · Zbl 1311.70016 · doi:10.1007/s11071-011-0094-3
[44] Or, Y., Teel, A.R.: Zeno stability of the set-valued bouncing ball. IEEE Trans. Autom. Control 56(2), 447-452 (2011) · Zbl 1368.93606 · doi:10.1109/TAC.2010.2090411
[45] Pang, J.-S., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 73, 199-226 (1996) · Zbl 0854.70008 · doi:10.1007/BF02592103
[46] Pang, J.S., Trinkle, J.C.: Stability characterizations of rigid body contact problems with Coulomb friction. Zeitschrift fur Angewandte Mathematik und Mechanik 80(10), 643-663 (2000) · Zbl 0989.70002 · doi:10.1002/1521-4001(200010)80:10<643::AID-ZAMM643>3.0.CO;2-E
[47] Papadopoulos, E., Rey, D.: A new measure of tipover stability margin for mobile manipulators. In: IEEE International Conference on Robotics and Automation, pp. 3111-3116 (1996) · Zbl 1157.93455
[48] Ponce, J., Sullivan, S., Sudsang, A., Boissonnat, J.-D., Merlet, J.-P.: On computing four-finger equilibrium and force-closure grasps of polyhedral objects. Int. J. Robot. Res. 16(1), 11-35 (1997) · Zbl 0829.70003 · doi:10.1177/027836499701600102
[49] Posa, M., Tobenkin, M., Tedrake, R.: Stability analysis and control of rigid-body systems with impacts and friction. IEEE Trans. Autom. Control 61(6), 1423-1437 (2016) · Zbl 1359.70074 · doi:10.1109/TAC.2015.2459151
[50] Shapiro, A., Rimon, E., Shoval, S.: On the passive force closure set of planar grasps and fixtures. Int. J. Robot. Res. 29(11), 1435-1454 (2010) · doi:10.1177/0278364910364424
[51] Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 41(1), 3-39 (2000) · Zbl 0962.70010 · doi:10.1137/S0036144599360110
[52] Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (1979) · Zbl 0961.74002
[53] Szalai, R.: Modelling elastic structures with strong nonlinearities with application to stick-slip friction. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 470, p. 20130593. The Royal Society, London (2014) · Zbl 1371.74223
[54] Tavakoli, A., Hurmuzlu, Y.: Robotic locomotion of three generations of a family tree of dynamical systems, part I: Passive gait patterns. Nonlinear Dyn. 73, 1969-1989 (2013) · Zbl 1157.93455
[55] Varkonyi, P.L.: On the stability of rigid multibody systems with applications to robotic grasping and locomotion. ASME J. Mech. Robot. 7(4), 041012 (2015) · Zbl 1395.93001
[56] Varkonyi, P.L.: Dynamics of mechanical systems with two sliding contacts: new facets of Painlevé paradox. Arch. Appl. Mech. (2016) (in press)
[57] Varkonyi, P.L., Gontier, D., Burdick, J.W.: On the Lyapunov stability of quasistatic planar biped robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 63-70 (2012)
[58] Wang, Y., Mason, M.T.: Two-dimensional rigid body collisions with friction. J. Appl. Mech. 10, 292-352 (1993)
[59] Westervelt, E.R., Grizzle, J.W., Chevallereau, C., Choi, J.H., Morris, B.: Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, Boca Raton (2007) · doi:10.1201/9781420053739
[60] Yu, S., Yu, X., Shirinzadeh, B., Man, Z.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957-1964 (2005) · Zbl 1125.93423 · doi:10.1016/j.automatica.2005.07.001
[61] Zhang, J., Johansson, K.H., Lygeros, J., Sastry, S.: Zeno hybrid systems. Int. J. Robust Nonlinear Control 11(5), 435-451 (2001) · Zbl 0977.93047 · doi:10.1002/rnc.592
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.