×

Quasismooth hypersurfaces in toric varieties. (English) Zbl 1423.14285

For a normal toric projective variety \(X\) over \({\mathbb C}\), by [D. A. Cox, J. Algebr. Geom. 4, No. 1, 17–50 (1995; Zbl 0846.14032)] there exists a GIT quotient \(p:\hat{X}\rightarrow X\) given by the action of a quasitorus, that is, \(\hat{X}\) is the complement in \(\text{Spec}\, R(X)\) of the closed set defined by the irrelevant ideal \(J\) of the Cox ring \(R(X)\) graded by the divisor class group \(\text{Cl}(X)\). Here, the quasitorus \(G=\text{Spec}\,{\mathbb C}[\text{Cl}(X)]\) acts on \(R(X)\) and \(\hat{X}\) by the \(\text{Cl}(X)\)-grading. Using this description of \(X\), a hypersurface in \(X\) can be defined as the image under \(p\) of the zero set of a homogeneous element \(f\in R(X)\) and, following [V. I. Danilov, Lect. Notes Math. 1479, 26–38 (1991; Zbl 0773.14011)] and [V. V. Batyrev and D. A. Cox, Duke Math. J. 75, No. 2, 293–338 (1994; Zbl 0851.14021)], such hypersurface is called quasi-smooth if the zero set \(V(f)\) is smooth in \(\hat{X}\), that is, the singular locus of \(f\) is contained in the irrelevant locus. The main result of the paper under review gives combinatorial conditions for the quasi-smoothness of a general member \(Y\) of a monomial linear system \({\mathcal L}\) on \(X\), first in terms of its Newton polytope in Theorem 3.6 and Corollary 3.8, and next in terms of the matrix of exponents of a monomial basis defining \(Y\) in homogeneous coordinates in Theorem 4.1. As applications, in Section 5 of the paper the authors recover the known classification of quasi-smooth hypersurfaces in fake weighted projective spaces, and in Section 6 they use quasi-smoothness to define some families of Calabi-Yau hypersurfaces.

MSC:

14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14J70 Hypersurfaces and algebraic geometry
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14J17 Singularities of surfaces or higher-dimensional varieties
14L30 Group actions on varieties or schemes (quotients)

Software:

Magma

References:

[1] Artebani, Michela; Comparin, Paola; Guilbot, Robin, Families of Calabi-Yau hypersurfaces in \(\mathbb{Q} \)-Fano toric varieties, J. Math. Pures Appl. (9), 106, 2, 319-341 (2016) · Zbl 1353.14061 · doi:10.1016/j.matpur.2016.02.012
[2] Batyrev, Victor V.; Cox, David A., On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J., 75, 2, 293-338 (1994) · Zbl 0851.14021 · doi:10.1215/S0012-7094-94-07509-1
[3] Berglund, Per; H\"{u}bsch, Tristan, A generalized construction of mirror manifolds, Nuclear Phys. B, 393, 1-2, 377-391 (1993) · Zbl 1245.14039 · doi:10.1016/0550-3213(93)90250-S
[4] Bosma, Wieb; Cannon, John; Playoust, Catherine, The Magma algebra system. I. The user language, Computational algebra and number theory (London, 1993), J. Symbolic Comput., 24, 3-4, 235-265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[5] Boutot, Jean-Fran\c{c}ois, Singularit\'{e}s rationnelles et quotients par les groupes r\'{e}ductifs, Invent. Math., 88, 1, 65-68 (1987) · Zbl 0619.14029 · doi:10.1007/BF01405091
[6] Buczy{\'n}ska, Weronika, Toryczne przestrzenie rzutowe, Magister thesis (2002), text in {P}olish, {E}nglish transl.: arXiv:0805.1211 (2008)
[7] Cox, David A.; Little, John B.; Schenck, Henry K., Toric varieties, Graduate Studies in Mathematics 124, xxiv+841 pp. (2011), American Mathematical Society, Providence, RI · Zbl 1223.14001 · doi:10.1090/gsm/124
[8] Danilov, Vladimir I., De {R}ham complex on toroidal variety, Algebraic geometry ({C}hicago, {IL}, 1989), Lecture Notes in Math. 1479, 26-38 (1991), Springer, Berlin · Zbl 0773.14011 · doi:10.1007/BFb0086261
[9] Hartshorne, Robin, Algebraic geometry, Graduate Texts in Mathematics, No. 52, xvi+496 pp. (1977), Springer-Verlag, New York-Heidelberg · Zbl 0367.14001
[10] Hertling, Claus; Kurbel, Ralf, On the classification of quasihomogeneous singularities, J. Singul., 4, 131-153 (2012) · Zbl 1292.32013
[11] Iano-Fletcher, A. R., Working with weighted complete intersections. Explicit birational geometry of 3-folds, London Math. Soc. Lecture Note Ser. 281, 101-173 (2000), Cambridge Univ. Press, Cambridge · Zbl 0960.14027
[12] Khovanski\u{\i}, A. G., Newton polyhedra (resolution of singularities). Current problems in mathematics, Vol. 22, Itogi Nauki i Tekhniki, 207-239 (1983), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow
[13] Kouchnirenko, A. G., Poly\`edres de Newton et nombres de Milnor, Invent. Math., 32, 1, 1-31 (1976) · Zbl 0328.32007 · doi:10.1007/BF01389769
[14] Kouchnirenko, Anatoli G., Criteria for the existence of a non-degenerate quasihomogeneous function with given weights (in Russian), Usp. Mat. Nauk, 32, 3, 169-170 (1977) · Zbl 0363.32001
[15] Krawitz, Marc, FJRW rings and Landau-Ginzburg mirror symmetry, 67 pp., ProQuest LLC, Ann Arbor, MI,\nopunct
[16] Kreuzer, Maximilian; Skarke, Harald, On the classification of quasihomogeneous functions, Comm. Math. Phys., 150, 1, 137-147 (1992) · Zbl 0767.57019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.