×

On a heavy quantum particle. (English) Zbl 1417.81129

Summary: We consider the Schrödinger equation for a particle on a flat \(n\)-torus with a bounded potential depending on time. The mass of the particle equals \(1/\mu^2\), where \(\mu\) is a small parameter. We show that the Sobolev \(H^\nu\)-norms of the wave function grow approximately as \(t^\nu\) on the time interval \(t\in[-t_\ast, t_\ast]\), where \(t_\ast\) is slightly less than \(O(1/\mu)\).

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] D. Bambusi, “Reducibility of 1D Schrödinger Equation with Time Quasiperiodic Unbounded Perturbations. I.,” Trans. Amer. Math. Soc. 370 (3), 1823-1865 (2018). · Zbl 1386.35058 · doi:10.1090/tran/7135
[2] D. Bambusi, B. Grebert, A. Maspero, and D. Robert, “Growth of Sobolev Norms for Abstract Linear Schrödinger Equations,” arXiv:1706.09708 [math.AP]. · Zbl 1460.35307
[3] D. Bambusi, B. Grebert, A. Maspero, and D. Robert, “Reducibility of the Quantum Harmonic Oscillator in <Emphasis Type=”Italic“>d-Dimensions with Polynomial Time Dependent Perturbation,” Anal. PDE, 11 (3), 775-799 (2018). · Zbl 1386.35059 · doi:10.2140/apde.2018.11.775
[4] J. Bourgain, “Growth of Sobolev Norms in Linear Schrödinger Equations with Quasi-Periodic Potential,” Comm. Math. Phys. 204 (1), 207-247 (1999). · Zbl 0938.35150 · doi:10.1007/s002200050644
[5] J. Bourgain, “On Growth of Sobolev Norms in Linear Schrödinger Equations with Smooth Time-Dependent Potentials,” J. Anal. Math. 77 (1), 315-348 (1999). · Zbl 0938.35026 · doi:10.1007/BF02791265
[6] J. Bourgain, “Estimates on Green’s Functions, Localization and the Quantum Kicked Rotor Model,” Ann. of Math. 156 (249), (2002). · Zbl 1213.82054
[7] M. Combescure, “The Quantum Stability Problem for Time-Periodic Perturbations of the Harmonic Oscillator,” Ann. Inst. H. Poincaré Phys. Théor. 47 (1), 63-83 (1987). · Zbl 0628.70017
[8] L. Chierchia and J. You, “KAM-Tiri for 1D Nonlinear Wave Equations with Periodic Boundary Conditions,” Comm. Math. Phys. 211 (2), 497-525 (2000). · Zbl 0956.37054 · doi:10.1007/s002200050824
[9] D. Fang, Z. Han, and W.-M. Wang, “Bounded Sobolev Norms for Klein-Gordon Equations under Non-Resonant Perturbation,” J. Math. Phys. 55 (12), (2014). · Zbl 1312.82011
[10] Grébert, B.; Paturel, E., KAM for the Klein-Gordon Equation on Sd (2016) · Zbl 1343.37075
[11] Grébert, B.; Paturel, E., On Reducibility of Quantum Harmonic Oscillator on ℝd with Quasiperiodic in Time Potential (2016)
[12] B. Grébert and L. Thomann, “KAM for the Quantum Harmonic Oscillator,” Comm. Math. Phys. 307 (2), 383-427 (2011). · Zbl 1250.81033 · doi:10.1007/s00220-011-1327-5
[13] F. M. Izrailev and D. L. Shepelyansky, “Quantum Resonans for a Rotator in Nonlinear Periodic Field,” Dokl. Phys. 43 (3), (1980).
[14] S. Kuksin, “Growth and Oscillations of Solutions of Nonlinear Schrödinger Equation,” Comm. Math. Phys. 178 (2), 265-280 (1996). · Zbl 0862.35112 · doi:10.1007/BF02099448
[15] S. B. Kuksin, “Spectral Properties of Solutions for Nonlinear PDEs in the Turbulent Regime,” GAFA Geom. Funct. Anal. 9, 141-184 (1999). · Zbl 0929.35145 · doi:10.1007/s000390050083
[16] S. Kuksin and A. Neishtadt, “On Quantum Averaging, Quantum KAM, and Quantum Diffusion,” Russ. Math. Surveys 68 (2), 335-348 (2013). · Zbl 1271.81066 · doi:10.1070/RM2013v068n02ABEH004831
[17] A. Maspero, “Lower Bounds on the Growth of Sobolev Norms in Some Linear Time Dependent Schrödinger Equations,” arXiv:1801.06813v2 [math.AP]. · Zbl 1435.35139
[18] Montalto, R., A Reducibility Result for a Class of Linear Wave Equations on Td (2017)
[19] M. V. Safonov, “The Abstract Cauchy-Kovalevskaya Theorem in a Weighted Banach Space,” Comm. Pure Appl. Math. 48, 629-643 (1995). · Zbl 0836.35004 · doi:10.1002/cpa.3160480604
[20] M. E. Taylor, Partial Differential Equations (III Springer, 2012).
[21] W.-M. Wang, “Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator under Time Quasi-Periodic Perturbations,” Comm. Math. Phys. 277 (2), 459-496 (2008). · Zbl 1144.81018 · doi:10.1007/s00220-007-0379-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.