×

Approximation of Lipschitz functions preserving boundary values. (English) Zbl 1429.26004

Authors’ abstract: We studied the problem of approximating Lipschitz functions defined on an open subset of a Banach space by differentiable Lipschitz functions preserving both the Lipschitz constant and the boundary value. In order to do that, we first obtained the following purely metric result, that can be of independent interest: Given a real-valued Lipschitz function on a metric space, such that its restriction to a given closed subset has a better Lipschitz constant, we can approximate it uniformly by a function with better Lipschitz constant on bounded sets, and which coincides with the initial function on the given closed subset. This intermediate result allowed us to give a positive answer to our problem, when the Lipschitz constant on the boundary of the function to be approximated is smaller than its global Lipschitz constant. The order of differentiability of the approximating functions depends on the regularity of the partitions of unity of the pertinent space, and then the approximations can be taken infinitely many times differentiable in finite-dimensional and Hilbert spaces. These results yield approximation of 1-Lipschitz functions by everywhere-differentiable functions, which satisfy the Eikonal equation almost everywhere and coincides in the boundary with the initial function, provided that the restriction of the function to the boundary has Lipschitz constant less than 1. We proved the optimality of these results by exhibiting an example of a 1-Lipschitz function defined on the boundary of an open subset of a two-dimensional normed space, which does not admit any 1-Lipschitz differentiable extension. The question whether the main problem of this paper, without restrictions on the boundary value of the function to be approximated, has a positive solution in a finite-dimensional Euclidean space remains open. A related question would be to find conditions on the norm of a finite-dimensional space for which our problem has a positive solution, without restrictions on the boundary value of the initial function.

MSC:

26A16 Lipschitz (Hölder) classes
26B05 Continuity and differentiation questions
41A29 Approximation with constraints
41A30 Approximation by other special function classes
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
54C30 Real-valued functions in general topology
58C25 Differentiable maps on manifolds

References:

[1] Lasry, J.-M., Lions, P.-L.: A remark on regularization in Hilbert spaces. Isr. J. Math. 55, 257-266 (1986) · Zbl 0631.49018 · doi:10.1007/BF02765025
[2] Attouch, H., Azé, D.: Approximation and regularization of arbitrary functions in Hilbert spaces by the Lasry-Lions method. Ann. Inst. Henri Poincaré. 10, 289-312 (1993) · Zbl 0780.41021 · doi:10.1016/S0294-1449(16)30214-1
[3] Czarnecki, M.O., Rifford, L.: Approximation and regularization of Lipschitz functions: convergence of the gradients. Trans. Am. Math. Soc. 358, 4467-4520 (2006) · Zbl 1091.49015 · doi:10.1090/S0002-9947-06-04103-1
[4] Azagra, D., Ferrera, J., López-Mesas, F., Rangel, Y.: Smooth approximation of Lipschitz functions on Riemannian manifolds. J. Math. Anal. Appl. 326, 1370-1378 (2007) · Zbl 1116.49011 · doi:10.1016/j.jmaa.2006.03.088
[5] Hájek, P., Johanis, M.: Smooth approximations. J. Funct. Anal. 259, 561-582 (2010) · Zbl 1200.46073 · doi:10.1016/j.jfa.2010.04.020
[6] Jiménez-Sevilla, M., Sánchez-González, L.: On some problems on smooth approximation and smooth extension of Lipschitz functions on Banach-Finsler manifolds. Nonlinear Anal. 74, 3487-3500 (2011) · Zbl 1214.49042 · doi:10.1016/j.na.2011.03.004
[7] Azagra, D., Fry, R., Keener, L.: Real analytic approximation of Lipschitz functions on Hilbert space and other Banach spaces. J. Funct. Anal. 262, 124-166 (2012) · Zbl 1248.46052 · doi:10.1016/j.jfa.2011.09.009
[8] Deville, R., Matheron, É.: Infinite games, banach space geometry and the Eikonal equation. Proc. Lond. Math. Soc. 95, 49-68 (2007) · Zbl 1163.91007 · doi:10.1112/plms/pdm005
[9] Denjoy, A.: Sur une proprieté des fonctions dérivées. Enseignement Math. 18, 320-328 (1916) · JFM 46.0381.05
[10] Deville, R., Jaramillo, J.: Almost classical solutions to Hamilton-Jacobi equations. Rev. Mat. Iberoamericana. 24, 989-1010 (2008) · Zbl 1161.26005 · doi:10.4171/RMI/564
[11] Moulis, N.: Approximation de fonctions différentiables sur certains espaces de Banach. Ann. Inst. Fourier. 21, 293-345 (1971) · Zbl 0271.41025 · doi:10.5802/aif.400
[12] Hájek, P., Johanis, M.: Uniformly Gâteaux smooth approximations on \[c_0(\Gamma )\] c0(Γ). J. Math. Anal. Appl. 350, 623-629 (2009) · Zbl 1170.46068 · doi:10.1016/j.jmaa.2008.05.008
[13] Aronsson, G.: Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551-561 (1967) · Zbl 0158.05001 · doi:10.1007/BF02591928
[14] Jensen, R.: Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123, 51-74 (1993) · Zbl 0789.35008 · doi:10.1007/BF00386368
[15] Savin, \[O.: C^1\] C1 regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 176, 351-361 (2005) · Zbl 1112.35070 · doi:10.1007/s00205-005-0355-8
[16] Evans, L.C., Smart, C.K.: Everywhere differentiability of infinity harmonic functions. Calc. Var. Partial Differ. Equ. 42, 289-299 (2011) · Zbl 1251.49034 · doi:10.1007/s00526-010-0388-1
[17] Aronsson, G., Crandall, M.G., Juutinen, P.: A tour of the theory of absolutely minimizing Lipschitz functions. Bull. Am. Math. Soc. 41, 439-505 (2011) · Zbl 1150.35047 · doi:10.1090/S0273-0979-04-01035-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.