×

Uniqueness of constant scalar curvature Kähler metrics with cone singularities. I: Reductivity. (English) Zbl 1479.53074

The paper under review is motivated by the problem of uniqueness of constant scalar curvature Kähler (cscK for short) metrics with conical singularities along a divisor on a compact complex manifold. Previously, uniqueness has been proved for conical Kähler-Einstein metrics.
In this paper, the authors introduce a Hölder-type space \(\mathcal{C}^{4,\alpha,\beta}\) on a Kähler manifold \(X\) with a smooth divisor \(D\), which is analog to the spaces \(\mathcal{C}^{\alpha,\beta}\), \(\mathcal{C}^{2,\alpha,\beta}\) introduced by S. K. Donaldson [in: Essays in mathematics and its applications. In honor of Stephen Smale’s 80th birthday. Berlin: Springer. 49–79 (2012; Zbl 1326.32039)] on a Kähler manifold \(X\) with a smooth divisor \(D\) in relation to the study of the regularity of the Laplace operator. Then they prove that a \(\mathcal{C}^{4,\alpha,\beta}\) Kähler potential \(u\) on a cscK manifold with cone angle \(2\pi\beta\leq\pi\) is in \(\mathcal{C}^{2,\alpha,\beta}\). Under the same conditions, they also show that an analog of Matsushima-Lichnerowics theorem holds: the Lie algebra of holomorphic vector fields of \(X\) tangent to \(D\) is reductive.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
32Q15 Kähler manifolds

Citations:

Zbl 1326.32039

References:

[1] Brendle, S.: Ricci flat Kähler metrics with edge singularities. Int. Math. Res. Not. IMRN 24, 5727-5766 (2013) · Zbl 1293.32029 · doi:10.1093/imrn/rns228
[2] Bando, S., Mabuchi, T.: Uniqueness of Einstein Kähler metrics modulo connected group actions, Algebraic geometry, Sendai, 1985. Advanced Studies in Pure Mathematics, vol. 10. North-Holland, Amsterdam, pp. 11-40 (1987) · Zbl 0641.53065
[3] Berman, R., Berndtsson, B.: Convexity of the K-energy on the space of Kähler metrics. arXiv:1405.0401 · Zbl 1376.32028
[4] Berndtsson, B.: A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry. Invent. Math. 200(1), 149-200 (2015) · Zbl 1318.53077 · doi:10.1007/s00222-014-0532-1
[5] Berman, R., Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. arXiv:1111.7158 · Zbl 1430.14083
[6] Calamai, S., Zheng, K.: Geodesics in the space of Kähler cone metrics, I. Am. J. Math. 137(5), 1149-1208 (2015) · Zbl 1334.58006 · doi:10.1353/ajm.2015.0036
[7] Chen, X.: On the existence of constant scalar curvature Kähler metric: a new perspective. arXiv:1506.06423 · Zbl 1401.53028
[8] Chen, X.X., Li, L., Păun, M.: Approximation of weak geodesics and subharmonicity of Mabuchi energy. Ann. Fac. Sci. Toulouse Math. (6) 25(5), 935-957 (2016) · Zbl 1373.53097 · doi:10.5802/afst.1516
[9] Chen, X., Păun, M., Zeng, Y.: On deformation of extremal metrics. arXiv:1506.01290
[10] Chen, X., Yuanqi, W.: On the regularity problem of complex Monge-Ampère equations with conical singularities. arXiv:1405.1021 · Zbl 1381.35056
[11] Donaldson, S.: Kähler Metrics with Cone Singularities Along a Divisor. Essays in Mathematics and its Applications, pp. 49-79. Springer, Heidelberg (2012) · Zbl 1326.32039
[12] Futaki, A., Honda, S., Saito, S.: Fano-Ricci limit spaces and spectral convergence. arXiv:1509.03862 · Zbl 1386.53044
[13] Futaki, A.: Kähler-Einstein Metrics and Integral Invariants. Lecture Notes in Mathematics, vol. 1314. Springer, Berlin (1988) · Zbl 0646.53045
[14] Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition · Zbl 1042.35002
[15] Hashimoto, Y.: Scalar curvature and Futaki invariant of Kähler metrics with cone singularities along a divisor. arXiv:1508.02640 · Zbl 1423.53087
[16] Keller, J., Zheng, K.: Construction of constant scalar curvature Kähler cone metrics. arxiv:1703.06312 · Zbl 1401.53060
[17] Kobayashi, S.: Transformation Groups in Differential Geometry. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1972 edition · Zbl 0829.53023
[18] Li, L.: Subharmonicity of conic Mabuchi’s functional, I. arXiv:1511.00178 · Zbl 1411.32024
[19] Li, L., Zheng, K.: Generalized Matsushima’s theorem and Kähler-Einstein cone metrics. arXiv:1511.02410 · Zbl 1392.53075
[20] Zheng, K.: Kähler Metrics with Cone Singularities and Uniqueness Problem. Current Trends in Analysis and its Applications, Trends Mathematics. Birkhäuser/Springer, Cham, pp. 395-408 (2015) · Zbl 1323.32020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.