×

Distortion and Tits alternative in smooth mapping class groups. (English) Zbl 1429.57036

Let \(S\) be a surface of finite type and \(K \subset S\) be a closed subset. Furthermore let \(\text{Diff}(S,K)\) be the group of orientation preserving \(C^\infty\)-diffeomorphisms of \(S\) that leave \(K\) invariant (as set). The smooth mapping class group is then defined as the quotient \[\mathcal{M}^\infty (S,K) = \text{Diff}(S,K) / \text{Diff}_0(S,K)\] where \(\text{Diff}_0(S,K)\) denotes the identity component of \(\text{Diff}(S,K)\). Furthermore denote by \(\mathcal{PM}^\infty(S,K)\) the subgroup of the smooth mapping class group consisting of elements which fix \(K\) pointwise. This is called the pure mapping class group.
Given a group \(G\) and a finite symmetric (\(\mathcal{G}^{-1} = \mathcal{G}\)) subset \(\mathcal{G} \subset G\). Denote by \(l_{\mathcal{G}}(g)\) the word length of the element \(g \in \langle \mathcal{G} \rangle\), defined as the minimal integer \(n\) such that \(g\) can be expressed as a product \(g = s_1 \cdots s_n\) with elements \(s_i \in \mathcal{G}\). An element \(g \in G\) is called distorted if it has infinite order and there exists a finite symmetric set \(\mathcal{G} \subset G\) such that \(g \in \langle \mathcal{G} \rangle\) and \(\lim_{n \to \infty}\frac{l_{\mathcal{G}}(g^n)}{n} = 0\).
The article under review investigates the pure mapping class group where the set \(K\) is a Cantor set. The following result is given: “Let \(S\) be a closed surface and \(K\) be a closed subset of \(S\) which is a Cantor set. Then the elements of \(\mathcal{PM}^\infty(S,K)\) are undistorted in \(\mathcal{M}^\infty(S,K)\).”
Furthermore it is shown that given a closed surface \(S\) and \(0 < \lambda < \frac{1}{2}\), then there are no distorted elements in the group \(\mathcal{M}^\infty(S, C_\lambda)\), where \(C_\lambda\) is an embedding of the standard ternary Cantor set with parameter \(\lambda\) in \(S\).
Mapping class groups of finite type satisfy the Tits alternative. It is investigated whether a similar statement holds for the groups where \(K\) is a Cantor set. The following result is given: “Let \(\Gamma\) be a finitely generated subgroup of \(\mathcal{M}^\infty(S, C_\lambda)\), then one of the following holds:
(1)
\(\Gamma\) contains a free subgroup on two generators.
(2)
\(\Gamma\) has a finite orbit, i.e.there exists \(p \in C_\lambda\) such that the set \(\Gamma(p) := \{g(p) \,|\, g \in \Gamma\}\) is finite.”
This theorem is deduced as an immediate corollary of the following statement about the Thompson’s group \(V_n\): “For any finitely generated subgroup \(\Gamma \subset V_n\), either \(\Gamma\) has a finite orbit or \(\Gamma\) contains a free subgroup.”

MSC:

57S25 Groups acting on specific manifolds
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)

References:

[1] Alibegovi\'c, Emina, Translation lengths in \({\rm Out}(F_n)\), Geom. Dedicata, 92, 87-93 (2002) · Zbl 1041.20024 · doi:10.1023/A:1019695003668
[2] B Collin Bleak et al., Centralizers in R. Thompson’s group \(V_n\), arXiv preprint arXiv:1107.0672 (2011).
[3] Bavard, Juliette, Hyperbolicit\'e du graphe des rayons et quasi-morphismes sur un gros groupe modulaire, Geom. Topol., 20, 1, 491-535 (2016) · Zbl 1362.37086 · doi:10.2140/gt.2016.20.491
[4] Brin, Matthew G., Higher dimensional Thompson groups, Geom. Dedicata, 108, 163-192 (2004) · Zbl 1136.20025 · doi:10.1007/s10711-004-8122-9
[5] Ca Danny Calegari, Blogpost: https://lamington.wordpress.com/2014/10/24/mapping-class-groups-the-next-generation/
[6] Cannon, J. W.; Floyd, W. J.; Parry, W. R., Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), 42, 3-4, 215-256 (1996) · Zbl 0880.20027
[7] Cooper, Daryl, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra, 111, 2, 453-456 (1987) · Zbl 0628.20029 · doi:10.1016/0021-8693(87)90229-8
[8] Horbez, Camille, A short proof of Handel and Mosher’s alternative for subgroups of Out \((F_N)\), Groups Geom. Dyn., 10, 2, 709-721 (2016) · Zbl 1346.20048 · doi:10.4171/GGD/361
[9] CH2 Camille Horbez, The Tits alternative for the automorphism group of a free product, arXiv preprint arXiv:1408.0546 (2014).
[10] Fisher, David, Groups acting on manifolds: around the Zimmer program. Geometry, rigidity, and group actions, Chicago Lectures in Math., 72-157 (2011), Univ. Chicago Press, Chicago, IL · Zbl 1264.22012 · doi:10.7208/chicago/9780226237909.001.0001
[11] Franks, John; Handel, Michael, Distortion elements in group actions on surfaces, Duke Math. J., 131, 3, 441-468 (2006) · Zbl 1088.37009 · doi:10.1215/S0012-7094-06-13132-0
[12] Franks, John; Handel, Michael, Periodic points of Hamiltonian surface diffeomorphisms, Geom. Topol., 7, 713-756 (2003) · Zbl 1034.37028 · doi:10.2140/gt.2003.7.713
[13] FN Louis Funar and Yurii Neretin, Diffeomorphisms groups of Cantor sets and Thompson-type groups, arXiv preprint arXiv:1411.4855 (2014). · Zbl 1499.57017
[14] Farb, Benson; Lubotzky, Alexander; Minsky, Yair, Rank-1 phenomena for mapping class groups, Duke Math. J., 106, 3, 581-597 (2001) · Zbl 1025.20023 · doi:10.1215/S0012-7094-01-10636-4
[15] FLP A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Ast\'erisque vol. 66, SMF, Paris, France. · Zbl 0406.00016
[16] Ghys, \'Etienne, Groups acting on the circle, Enseign. Math. (2), 47, 3-4, 329-407 (2001) · Zbl 1044.37033
[17] Gromov, M., Asymptotic invariants of infinite groups. Geometric group theory, Vol.2, Sussex, 1991, London Math. Soc. Lecture Note Ser. 182, 1-295 (1993), Cambridge Univ. Press, Cambridge
[18] de la Harpe, Pierre, Topics in geometric group theory, Chicago Lectures in Mathematics, vi+310 pp. (2000), University of Chicago Press, Chicago, IL · Zbl 0965.20025
[19] Hirsch, Morris W., Differential topology, Graduate Texts in Mathematics 33, x+222 pp. (1994), Springer-Verlag, New York
[20] Hmili, Hadda; Liousse, Isabelle, Dynamique des \'echanges d’intervalles des groupes de Higman-Thompson \(V_{r,m} \), Ann. Inst. Fourier (Grenoble), 64, 4, 1477-1491 (2014) · Zbl 1328.37037
[21] McCarthy, John, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc., 291, 2, 583-612 (1985) · Zbl 0579.57006 · doi:10.2307/2000100
[22] Margulis, Gregory, Free subgroups of the homeomorphism group of the circle, C. R. Acad. Sci. Paris S\'er. I Math., 331, 9, 669-674 (2000) · Zbl 0983.37029 · doi:10.1016/S0764-4442(00)01694-3
[23] Milnor, John, Lectures on the \(h\)-cobordism theorem, Notes by L. Siebenmann and J. Sondow, v+116 pp. (1965), Princeton University Press, Princeton, N.J. · Zbl 0161.20302
[24] Navas, Andr\'es, Groups of circle diffeomorphisms, Chicago Lectures in Mathematics, xviii+290 pp. (2011), University of Chicago Press, Chicago, IL · Zbl 1236.37002 · doi:10.7208/chicago/9780226569505.001.0001
[25] Salazar-D\'\i az, Olga Patricia, Thompson’s group \(V\) from a dynamical viewpoint, Internat. J. Algebra Comput., 20, 1, 39-70 (2010) · Zbl 1266.20055 · doi:10.1142/S0218196710005534
[26] Zimmer, Robert J., Ergodic theory and semisimple groups, Monographs in Mathematics 81, x+209 pp. (1984), Birkh\"auser Verlag, Basel · Zbl 0571.58015 · doi:10.1007/978-1-4684-9488-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.