×

Analytic approximation and differentiability of joint chance constraints. (English) Zbl 1428.90104

Summary: An inner-outer approximation approach was recently developed to solve single chance constrained optimization (SCCOPT) problems. In this paper, we extend this approach to address joint chance constrained optimization (JCCOPT) problems. Using an inner-outer approximation, two smooth parametric optimization problems are defined whose feasible sets converge to the feasible set of JCCOPT from inside and outside, respectively. Any optimal solution of the inner approximation problem is a priori feasible to the JCCOPT. As the approximation parameter tends to zero, a subsequence of the solutions of the inner and outer problems, respectively, converge asymptotically to an optimal solution of the JCCOPT. As a main result, the continuous differentiability of the probability function of a joint chance constraint is obtained by examining the uniform convergence of the gradients of the parametric approximations.

MSC:

90C15 Stochastic programming
90C31 Sensitivity, stability, parametric optimization
90C30 Nonlinear programming
26A42 Integrals of Riemann, Stieltjes and Lebesgue type
57R12 Smooth approximations in differential topology
58B10 Differentiability questions for infinite-dimensional manifolds
Full Text: DOI

References:

[1] Birge, Jr; Louveaux, F., Introduction of stochastic programming (1997), New York: Springer-Verlag, New York · Zbl 0892.90142
[2] Guo, S.; Xu, H.; Zhang, L., Convergence analysis for mathematical programs with distributionally robust chance constraint, SIAM J Optim, 27, 2, 784-816 (2017) · Zbl 1471.90101 · doi:10.1137/15M1036592
[3] Kibzun, Ai; Kan, Ys., Stochastic programming problems (1996), West Sussex: John Wiley & Sons, West Sussex
[4] Prekopa, A., Stochastic programming (1995), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0834.90098
[5] Marti, K., Differentiation formulas for probability functions: the transformation method, Math Prog Ser B, 75, 201-220 (1996) · Zbl 0905.90128
[6] Uryasev, S., Derivatives of probability functions and some applications, Ann Oper Res, 56, 287-311 (1995) · Zbl 0824.60015 · doi:10.1007/BF02031712
[7] Van Ackooij, P.; Henrion, R., Gradient formulae for nonlinear probabilistic constraints with Gaussian and Gaussian-like distributions, SIAM J Optim, 24, 1864-1889 (2014) · Zbl 1319.93080 · doi:10.1137/130922689
[8] Henrion, R.; Möller, Am., A gradient formula for linear chance constraints under Gaussian distribution, Math Oper Res, 37, 3, 475-488 (2012) · Zbl 1297.90095 · doi:10.1287/moor.1120.0544
[9] Van Ackooij, P, Henrion, R.(Sub-) gradient formulae for probabilistic functions of random inequality constraints under Gaussian distributions. Weierstrass Institute, Berlin, Germany, Preprint No. 2230, 2016. · Zbl 1434.90111
[10] Luedtke, L.; Ahmed, S., A sample approximation approach for optimization with probabilistic constraints, SIAM J Optim, 19, 674-699 (2009) · Zbl 1177.90301 · doi:10.1137/070702928
[11] Pagnoncelli, Bk; Ahmed, S.; Shapiro, A., Sample average approximation method for chance constrained programming: theory and applications, J Optim Theory Appl, 142, 399-416 (2009) · Zbl 1175.90306 · doi:10.1007/s10957-009-9523-6
[12] Sun, H.; Xu, H.; Wang, Y., Asymptotic analysis of sample average approximation for stochastic optimization problems with joint chance constraints via conditional Value at risk and difference of convex functions, J Optim Theory Appl, 161, 1, 257-284 (2014) · Zbl 1314.90059 · doi:10.1007/s10957-012-0127-1
[13] Calafiore, G.; Campi, Mc., Uncertain convex programs: randomized solutions and confidence levels, Math Prog Ser B, 102, 1, 25-46 (2005) · Zbl 1177.90317 · doi:10.1007/s10107-003-0499-y
[14] Campi, Mc; Garetti, S., Sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality, J Optim Theory Appl, 148, 257-280 (2011) · Zbl 1211.90146 · doi:10.1007/s10957-010-9754-6
[15] Henrion, R.; Küchler, Ck; Römisch, W., Scenario reduction in stochastic programming with respect to discrepancy distances, Comput Optim Appl, 43, 67-93 (2009) · Zbl 1178.90258 · doi:10.1007/s10589-007-9123-z
[16] Ahmed, S., Convex relaxation of chance constrained optimization problems, Optim Lett, 8, 1-12 (2014) · Zbl 1315.90026 · doi:10.1007/s11590-013-0624-7
[17] Nemirovski, A., On safe tractable approximation of chance constraints, Eur J Oper Res, 219, 707-718 (2012) · Zbl 1253.90185 · doi:10.1016/j.ejor.2011.11.006
[18] Nemirovski, A.; Shapiro, A., Convex approximation of chance constrained programs, SIAM J Optim, 17, 969-996 (2006) · Zbl 1126.90056 · doi:10.1137/050622328
[19] Ermoliev, Ym; Norkin, Vi; Wets, Rj-B., The minimization of semicontinuous functions: mollifier subgradients, SIAM J Control Optim, 33, 1, 146-167 (1955) · Zbl 0822.49016
[20] Shan, F.; Zhang, L.; Xiao, X., A smoothing function approach to joint chance-constrained programs, J Optim Theory Appl, 163, 181-199 (2014) · Zbl 1333.90085 · doi:10.1007/s10957-013-0513-3
[21] Hong, Jl; Yang, Y.; Zhang, L., Sequential convex approximations to joint chance constrained programs: a Monte Carlo approach, Oper Res, 59, 617-630 (2011) · Zbl 1231.90303 · doi:10.1287/opre.1100.0910
[22] Geletu, A.; Klöppel, M.; Hoffmann, A., A tractable approximation of non-convex chance constrained optimization with non-Gaussian uncertainties, Eng Optim, 47, 4, 495-520 (2015) · doi:10.1080/0305215X.2014.905550
[23] Geletu, A.; Klöppel, M.; Hoffmann, A., An inner-outer approximation approach to chance constrained optimization, SIAM J Optim, 27, 3, 1834-1857 (2017) · Zbl 1387.90170 · doi:10.1137/15M1049750
[24] Henrion, R.Chance constrained problems. Weierstraß Institut für Angewandte Analysis und Stochastik, Pre-Conf., PhD-Workshop, 2009 August 15; Available from.
[25] Dieudonne, J., Éleménts d’Analyse (1974), Bruxelles, Montréal: Revue at augmentée Gauthier-Villars, Editeur Paris, Bruxelles, Montréal
[26] Jongen, Hth; Twilt, F.; Weber, Gw., Semi-infinite optimization: structure and stability of the feasible set, J Optim Theory Appl, 72, 529-552 (1992) · Zbl 0807.90113 · doi:10.1007/BF00939841
[27] Dieudonne, J., Nonstandard analysis in practice (1968), New York, London: Academic Press, New York, London
[28] Jongen, Hth; Jonker, P.; Twilt, F., Nonlinear optimization in finite dimensions (2000), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0985.90083
[29] Rudin, W., Real and complex analysis (1987), New York: McGraw-Hill, New York · Zbl 0925.00005
[30] Natanson, Ip., Theorie der Funktionen einer reellen Veränderlichen (1981), Berlin: Akademie-Verlalg, Berlin · Zbl 0464.26001
[31] Robinson, Sm., Stability theorems of inequalities. Part II: differentiable nonlinear systems, Math Oper Res, 1, 130-143 (1976) · Zbl 0418.52005 · doi:10.1287/moor.1.2.130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.