×

Virtual critical regularity of mapping class group actions on the circle. (English) Zbl 07928076

Summary: We show that if \(G_1\) and \(G_2\) are non-solvable groups, then no \(C^{1, \tau}\) action of \((G_1\times G_2)*\mathbb{Z}\) on \(S^1\) is faithful for \(\tau > 0\). As a corollary, if \(S\) is an orientable surface of complexity at least three then the critical regularity of an arbitrary finite index subgroup of the mapping class group \(\operatorname{Mod}(S)\) with respect to the circle is at most one, thus strengthening a result of the first two authors with Baik.

MSC:

57M60 Group actions on manifolds and cell complexes in low dimensions
20F36 Braid groups; Artin groups
37C05 Dynamical systems involving smooth mappings and diffeomorphisms
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
20F14 Derived series, central series, and generalizations for groups
20F60 Ordered groups (group-theoretic aspects)

References:

[1] Athanassopoulos, K.: Denjoy C^1 diffeomorphisms of the circle and McDuff’s question. Expo. Math. 33(1), 48-66. MR 3310927 (2015) · Zbl 1322.37017
[2] Baik, H., Kim, S.-h., Koberda, T.: Unsmoothable group actions on compact one-manifolds. J. Eur. Math. Soc. (JEMS) 21(8), 2333-2353. MR 4035847 · Zbl 1454.20074
[3] Baik, H., Samperton, E.: Spaces of invariant circular orders of groups. Groups Geom. Dyn. 12(2), 721-763. MR 3813208 (2018) · Zbl 1456.20040
[4] Casson, A. J., Bleiler, S. A.: Automorphisms of surfaces after Nielsen and Thurston. London Mathematical Society Student Texts, vol. 9. Cambridge University Press, Cambridge, iv+ 1055 (1988) · Zbl 0649.57008
[5] Castro, G., Jorquera, E., Navas, A.: Sharp regularity for certain nilpotent group actions on the interval. Math. Ann. 359(1-2), 101-152. MR 3201895 (2014) · Zbl 1310.37020
[6] Deroin, B., Kleptsyn, V., Navas, A.: Sur la dynamique unidimensionnelle en régularité intermédiaire. Acta Math. 199(2), 199-262. MR 2358052 (2007) · Zbl 1139.37025
[7] Farb, B.: Some problems on mapping class groups and moduli space, Problems on mapping class groups and related topics. Proc. Sympos. Pure Math., vol. 74, pp. 11-55. Amer. Math. Soc., Providence. MR 2264130 (2007h:57018) (2006) · Zbl 1191.57015
[8] Farb, B., Franks, J.: Groups of homeomorphisms of one-manifolds. MR III. MR Nilpotent subgroups. Ergodic Theory Dynam. Systems 23(5), 1467-1484. MR 2018608 (2004k:58013) (2003) · Zbl 1037.37020
[9] Farb, B.: Groups of homeomorphisms of one-manifolds, i: actions of nonlinear groups, What’s next? Ann. of Math. Stud., vol. 205, pp. 116-140. Princeton Univ. Press, Princeton. MR 4205638 (2020) · Zbl 1452.37033
[10] Handel, M., Thurston, W. P.: New proofs of some results of Nielsen. Adv. in Math. 56(2), 173-191. 788938 (87e:57015) (1985) · Zbl 0584.57007
[11] Jorquera, E.: A universal nilpotent group of C^1 diffeomorphisms of the interval. Topol. Appl. 159(8), 2115-2126. MR 2902746 (2012) · Zbl 1267.57039
[12] Jorquera, E., Navas, A., Rivas, C.: On the sharp regularity for arbitrary actions of nilpotent groups on the interval: the case of N_4. Ergodic Theory Dynam. Syst. 38(1), 180-194. MR 3742542 (2018) · Zbl 1387.37029
[13] Kim, S.-h., Koberda, T.: Free products and the algebraic structure of diffeomorphism groups. J. Topol. 11(4), 1054-1076. MR 3989437 (2018) · Zbl 1408.57020
[14] Kim, S.-h., Koberda, T.: Diffeomorphism groups of critical regularity. Invent. Math. 221(2), 421-501. MR 4121156 (2020) · Zbl 1446.57020
[15] Kim, S-h; Koberda, T.; Rivas, C., Direct products, overlapping actions, and critical regularity, J. Mod. Dyn., 17, 2021, 285-304, 2021 · Zbl 1480.57029 · doi:10.3934/jmd.2021009
[16] Kim, S.-h., Koberda, T.: Structure and regularity of group actions on one-manifolds. Springer Monographs in Mathematics, Springer (2021) · Zbl 1486.57001
[17] Koberda, T.: Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups. Geom. Funct. Anal. 22(6), 1541-1590. MR 3000498 (2012) · Zbl 1282.37024
[18] Mann, K., Wolff, M.: Rigidity of mapping class group actions on S^1. Geom. Topol. 24(3), 1211-1223. MR 4157553 (2020) · Zbl 1454.57014
[19] Mann, K., Wolff, M.: Reconstructing maps out of groups. Prepint, arXiv:1907.03024 · Zbl 07785197
[20] Navas, A.: Growth of groups and diffeomorphisms of the interval. Geom. Funct. Anal. 18(3), 988-1028. MR 2439001 (2008) · Zbl 1201.37060
[21] Navas, A.: Groups of circle diffeomorphisms, Spanish ed., Chicago Lectures in Mathematics. University of Chicago Press, Chicago. MR 2809110 (2011) · Zbl 1236.37002
[22] Navas, A., Rivas, C.: A new characterization of Conrad’s property for group orderings, with applications. Algebr. Geom. Topol. 9(4), 2079-2100, With an appendix by Adam Clay. MR 2551663 (2009) · Zbl 1211.06009
[23] Nielsen, J.: Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen. Acta Math. 50(1), 189-358. MR 1555256 (1927) · JFM 53.0545.12
[24] Parkhe, K.: Nilpotent dynamics in dimension one: structure and smoothness. Ergodic Theory Dynam. Syst. 36(7), 2258-2272. MR 3568980 (2016) · Zbl 1375.37120
[25] Parwani, K.: C^1 actions on the mapping class groups on the circle. Algebr. Geom. Topol. 8(2), 935-944. MR 2443102 (2010c:37061) (2008) · Zbl 1155.37028
[26] Parwani, K.: C^1 actions on the circle of finite index subgroups of Mod(Σ_g), Aut(F_n), and Out(F_n). Rocky Mountain J. Math., to appear · Zbl 1501.37039
[27] Plante, J. F.: Solvable groups acting on the line. Trans. Amer. Math. Soc. 278(1), 401-414. MR 697084 (1983) · Zbl 0569.57012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.