×

Wave propagation in transversely isotropic porous piezoelectric materials. (English) Zbl 1183.74118

Summary: Wave propagation in porous piezoelectric material (PPM), having crystal symmetry 6 mm, is studied analytically. Christoffel equation is derived for the propagation of plane harmonic waves in such a medium. The roots of this equation give four complex wave velocities which can propagate in such materials. The phase velocities of propagation and the attenuation quality factors of all these waves are described in terms of complex wave velocities. Phase velocities and attenuation of the waves in PPM depend on the phase direction. Numerical results are computed for the PPM BaTiO\(_{3}\). The variation of phase velocity and attenuation quality factor with phase direction, porosity and the wave frequency is studied. The effects of anisotropy and piezoelectric coupling are also studied. The phase velocities of two quasi dilatational waves and one quasi shear waves get affected due to piezoelectric coupling while that of type 2 quasi shear wave remain unaffected. The phase velocities of all the four waves show non-dispersive behavior after certain critical high frequency. The phase velocity of all waves decreases with porosity while attenuation of respective waves increases with porosity of the medium. The characteristic curves, including slowness curves, velocity curves, and the attenuation curves, are also studied in this paper.

MSC:

74J10 Bulk waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F15 Electromagnetic effects in solid mechanics
74E10 Anisotropy in solid mechanics
Full Text: DOI

References:

[1] Arai, T.; Ayusawa, K.; Sato, H.; Miyata, T.; Kawamura, K.; Kobayashi, K.: Properties of hydrophone with porous piezoelectric ceramics, Japanese journal of applied physics 30, 2253-2255 (1991)
[2] Arnau, A.: Piezoelectric transducers and applications, (2004)
[3] , Piezoelectric transducers and applications (2008)
[4] Auld, B. A.: Acoustic fields and waves in solids, Acoustic fields and waves in solids 1 (1973)
[5] Auld, B. A.: Wave propagation and resonance in piezoelectric materials, Journal of the acoustic society of America 70, No. 6, 1577-1585 (1981)
[6] Banno, H.: Theoretical equations for dielectric, piezoelectric and elastic properties of flexible composite consisting of polymer and ceramic powder of two different materials, Ferroelectric 95, 111-115 (1989)
[7] Banno, H.: Theoretical equations for dielectric, piezoelectric and elastic properties of 0 – 3 composite based on modified cubes model – a general solution, Japanese journal of applied physics supplementary 28, No. 2, 190-192 (1989)
[8] Banno, H.: Effects of porosity on dielectric, elastic and electromechanical properties of \(Pb(Zr,Ti)\)O3 ceramics with open pores: a theoretical approach, Japanese journal of applied physics 32, 4214-4217 (1993)
[9] Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low frequency range, Journal of the acoustic society of America 28, No. 2, 168-178 (1956)
[10] Biot, M. A.: Mechanics of deformation and acoustic propagation in porous media, Journal of applied physics 33, No. 4, 1482-1498 (1962) · Zbl 0104.21401 · doi:10.1063/1.1728759
[11] Bisegna, P.; Luciano, R.: Variational bounds for the overall properties of piezoelectric composites, Journal of the mechanical and physics of solids 44, No. 4, 583-602 (1996) · Zbl 1054.74705 · doi:10.1016/0022-5096(95)00084-4
[12] Bowen, C. R.; Perry, A.; Lewis, A. C. F.; Kara, H.: Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit, Journal of the European ceramic society 24, 541-545 (2004)
[13] Craciun, F.; Guidarelli, G.; Galassi, C.; Roncari, E.: Elastic wave propagation in porous piezoelectric ceramics, Ultrasonic 36, 427-430 (1998)
[14] Dong, K.; Wang, X.: Wave propagation characteristics in piezoelectric cylindrical laminated shells under large deformation, Composite structures 77, 171-181 (2007)
[15] , Piezoelectric materials: advances in science, technology and applications 76 (2000)
[16] Gomez, T. E.; Montero, F.: Highly coupled dielectric behavior of porous ceramics embedding a polymer, Applied physics letters 68, 263-265 (1996)
[17] Gomez, T. E.; Elvira, L.; Riera, E.: Generations of slow wave to characterize air filled porous fabrics, Journal of applied physics 78, 2843-2845 (1995)
[18] Gomez, T. E.; Mulholland, A. J.; Hayward, G.; Gomatam, J.: Wave propagation in 0 – 3/3 – 3 connectivity composites with complex microstructure, Ultrasonics 38, 897-907 (2000)
[19] Gupta, R. K.; Venkatesh, T. A.: Electromechanical response of porous piezoelectric materials, Acta materialia 54, 4063-4078 (2006)
[20] Hashimoto, K. Y.; Yamaguchi, M.: Elastic, piezoelectric and dielectric properties of composite materials, Proceeding IEEE ultrasonics symposium 2, 697-702 (1986)
[21] Hayashi, T.; Sugihara, K.; Okazaki, K.: Processing of porous 3 – 3 PZT ceramics using capsule-free O2 H.P., Japanese journal of applied physics 30, 2243-2246 (1991)
[22] Hsu, J. C.; Wu, T. T.: Calculations of Lamb wave band gaps and dispersions for piezoelectric phononic plates using Mindlin’s theory-based plane wave expansion method, IEEE transactions on ultrasonics, ferroelectrics and frequency control 55, 431-441 (2008)
[23] Huang, S.; Chang, J.; Lu, L.; Liu, F.; Ye, Z.; Cheng, X.: Preparation and polarization of 0 – 3 cement based piezoelectric composites, Materials research bulletin 41, 291-297 (2006)
[24] Ikeda, T.: Fundamentals of piezoelectricity, (1990)
[25] Johnson, D. L.; Koplik, J.; Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media, Journal of fluid mechanics 176, 379-402 (1987) · Zbl 0612.76101 · doi:10.1017/S0022112087000727
[26] Katzir, S., 2006. The Beginning of Piezoelectricity – A Study in Mundane Physics, vol. 246. Springer, New York.
[27] Khoroshun, L. P.; Dorodnykh, T. I.: Modeling the short-term damageability of a transversely isotropic piezoelectric material, International applied mechanics 39, No. 9, 1046-1053 (2003) · Zbl 1127.74309 · doi:10.1023/B:INAM.0000008212.92194.09
[28] Lacour, O.; Lagier, M.; Sornette, D.: Effect of dynamic fluid compressibility and permeability on porous piezoelectric ceramics, Journal of the acoustic society of America 96, No. 6, 3548-3557 (1994)
[29] Li, F. M.; Wang, Y. S.: Study on wave localization in disordered periodic layered piezoelectric composite structures, International journal of solids and structures 42, 6457-6474 (2005) · Zbl 1119.74440 · doi:10.1016/j.ijsolstr.2005.03.004
[30] Li, F. M.; Wang, Y.; Hu, C.; Huang, W.: Wave localization in randomly disordered periodic layered piezoelectric structures, Acta mechanica sinica 22, 559-567 (2006) · Zbl 1202.74085 · doi:10.1007/s10409-006-0035-4
[31] Mesquida, A. A.; Otero, J. A.; Ramos, R. R.; Comas, F.: Wave propagation in layered piezoelectric structures, Journal of applied physics 83, No. 9, 4652-4659 (1998)
[32] Mesquida, A. A.; Ramos, R. R.; Comas, F.; Monsivais, G.; Sirvent, R. E.: Scaterring of shear horizontal piezoelectric waves in piezocomposite media, Journal of applied physics 89, No. 5, 2886-2892 (2001)
[33] Mizumura, K.; Kurihara, Y.; Ohashi, H.; Kumamoto, S.; Okuno, K.: Porous piezoelectric ceramic transducer, Japanese journal of applied physics 30, 2271-2273 (1991)
[34] Nayfeh, A. H.; Chien, H. T.: Wave propagation interaction with free and fluid loaded piezoelectric substrates, Journal of the acoustic society of America 91, No. 6, 3126-3135 (1992)
[35] Nayfeh, A. H.; Faidi, W.; Abdelrahman, W.: An approximate model for wave propagation in piezoelectric materials. 1. Laminated composites, Journal of applied physics 85, No. 4, 2337-2346 (1999)
[36] Newnham, R. E.: Properties of materials: anisotropy, symmetry and structure, (2005)
[37] Pan, E.; Han, F.: Green’s functions for transversely isotropic piezoelectric multilayered half-spaces, Journal of engineering mathematics 49, 271-288 (2004) · Zbl 1068.74541 · doi:10.1023/B:ENGI.0000031183.83519.19
[38] Pan, E.; Han, F.: Green’s functions for transversely isotropic piezoelectric functionally graded multilayered half-spaces, International journal of solids and structures 42, 3207-3233 (2005) · Zbl 1127.74330 · doi:10.1016/j.ijsolstr.2004.11.003
[39] Piazza, D.; Capiani, C.; Galassi, C.: Piezoceramic material with anisotropic graded porosity, Journal of the European ceramic society 25, 3075-3078 (2005)
[40] Piazza, D.; Stoleriu, L.; Mitoseriu, L.; Stancu, A.; Galassi, C.: Characterization of porous PZT ceramics by first order reversal curves (FORC) diagrams, Journal of the European ceramic society 26, 2959-2962 (2006)
[41] Praveenkumar, B.; Kumar, H. H.; Kharat, D. K.: Characterization and microstructure of porous lead zirconate titanate ceramics, Bulletin of materials science 28, No. 5, 453-455 (2005)
[42] Qian, Z.; Jin, F.; Kishimoto, K.; Wang, Z.: Effect of initial stress on the propagation behavior of SH waves in multilayered piezoelectric composite structures, Sensor and actuators A 112, 368-375 (2004)
[43] Qian, Z.; Jin, F.; Wang, Z.; Kishimoto, K.: Dispersion relations for SH wave propagation in periodic piezoelectric composite layered structures, International journal of engineering science 42, 673-689 (2004)
[44] Rasolofasaon, P. N. J.; Zinszner, B. E.: Comparison between permeability amisotropy and elastic anisotropy of reservoir rocks, Geophysics 67, 230-240 (2002)
[45] Smith, W. A.; Auld, A.: Modeling 1 – 3 composite piezoelectrics: thickness-mode oscillations, IEEE transaction on ultrasonics ferroelectrics and frequency control 38, No. 1, 40-47 (1990)
[46] Tichy, J.; Erhart, J.; Kittinger, E.; Fousek, J.; Privatska, J.; Janovec, V.: Fundamentals of piezoelectric sensorics – mechanical dielectric and thermodynamical properties of piezoelectric materials, (2007)
[47] Uchino, K.: Piezoelectric actuators and ultrasonic motor, (1997)
[48] Vashishth, A. K.; Gupta, V.: Vibrations of porous piezoelectric ceramic plate, Journal of sound and vibration 325, 781-797 (2009)
[49] Wang, L.; Yuan, F. G.: Group velocity and characteristic wave curves of Lamb waves in composites: modeling and experiments, Composites science and technology 67, 1370-1384 (2007)
[50] Wang, Q.; Chen, Q.; Zhu, J.; Huang, C.; Darvell, B. W.; Chen, Z.: Effect of pore shape and porosity on the properties of porous LNKN ceramics as bone substitutes, Materials chemistry and physics 109, 488-491 (2008)
[51] Xia, Z.; Ma, S.; Qui, X.; Wu, Y.; Wang, F.: Influence of porosity on the stability of charge and piezoelectricity for porous polytetrafluoroethylene film electrets, Journal of electrostatics 59, 57-69 (2003)
[52] Yang, J.: An introduction to the theory of piezoelectricity, (2005) · Zbl 1066.74001
[53] Zakharenko, A. A.: New solutions of shear waves in piezoelectric cubic crystals, Journal of zhejiang university science A 8, No. 4, 669-674 (2007) · Zbl 1386.74055
[54] Zeng, T.; Dong, X. L.; Mao, C. L.; Chen, S. T.; Chen, H.: Preparation and properties of porous PMN-PZT ceramics doped with strontium, Materials science and engineering B 135, 50-54 (2006)
[55] Zeng, T.; Dong, X. L.; Chen, H.; Wang, Y. L.: The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application, Material science and engineering B 131, 181-185 (2006)
[56] Zeng, T.; Dong, X. L.; Mao, C. L.; Zhou, Z. Y.; Yang, H.: Effects of pore shape and porosity on the properties of porous PZT 95/5 ceramics, Journal of the European ceramic society 27, 2025-2029 (2007)
[57] Zhang, H. L.; Li, J. F.; Zhang, B. P.: Microstructure and electrical properties of porous PZT ceramics derived from different pore-forming agents, Acta materialia 55, 171-181 (2007)
[58] Zinchuk, L. P.; Podlipenets, A. N.: Propagation of shear waves in piezoelectric superlattice-substrate structures, Journal of mathematical sciences 101, No. 6, 3688-3693 (2000) · Zbl 1225.74045 · doi:10.1007/BF02674059
[59] Zinchuk, L. P.; Podlipenets, A. N.: Dispersion equations for Rayleigh waves in a piezoelectric periodically layered structure, Journal of mathematical sciences 103, No. 3, 398-403 (2001) · Zbl 1121.76387 · doi:10.1023/A:1011382816558
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.