×

Strong coupling theory of magic-angle graphene: a pedagogical introduction. (English) Zbl 1486.82052

Summary: We give a self contained review of a recently developed strong coupling theory of magic-angle graphene. An advantage of this approach is that a single formulation can capture both the insulating and superconducting states, and with a few simplifying assumptions, can be treated analytically. We begin by reviewing the electronic structure of magic angle graphene’s flat bands, in a limit that exposes their peculiar band topology and geometry. We highlight how similarities between the flat bands and the lowest Landau level give insight into the effect of interactions. For example, at certain fractional fillings, we note the promise for realizing fractional Chern states. At integer fillings, this approach points to flavor ordered insulators, which can be captured by a sigma-model in its ordered phase. Unexpectedly, topological textures of the sigma model carry electric charge which allows us to extend the same theory to describe the doped phases away from integer filling. We show how this approach can lead to superconductivity through the proliferation of charged topological textures, and estimate the T\(_c\) for the superconductor. We highlight the important role played by an effective super-exchange coupling both in pairing and in setting the effective mass of Cooper pairs. Seeking to enhance this coupling helps predict new superconducting platforms, including the recently discovered alternating twist trilayer platform. We also contrast our proposal from strong coupling theories for other superconductors.

MSC:

82D55 Statistical mechanics of superconductors

References:

[1] Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P., Nature, 556, 7699, 43-50 (2018)
[2] Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Ashoori, R. C.; Jarillo-Herrero, P., Nature, 556, 7699, 80-84 (2018)
[3] Lopes dos Santos, J. M.B.; Peres, N. M.R.; Castro Neto, A. H., Phys. Rev. Lett., 99, Article 256802 pp. (2007)
[4] Li, G.; Luican, A.; Lopes dos Santos, J. M.B.; Castro Neto, A. H.; Reina, A.; Kong, J.; Andrei, E. Y., Nat. Phys., 6, 2, 109-113 (2010)
[5] Trambly de Laissardière, G.; Mayou, D.; Magaud, L., Nano Lett., 10, 3, 804-808 (2010)
[6] Mele, E. J., Phys. Rev. B, 81, Article 161405 pp. (2010)
[7] Luican, A.; Li, G.; Reina, A.; Kong, J.; Nair, R. R.; Novoselov, K. S.; Geim, A. K.; Andrei, E. Y., Phys. Rev. Lett., 106, Article 126802 pp. (2011)
[8] Bistritzer, R.; MacDonald, A. H., Proc. Natl. Acad. Sci., 108, 30, 12233-12237 (2011)
[9] Lopes dos Santos, J. M.B.; Peres, N. M.R.; Castro Neto, A. H., Phys. Rev. B, 86, Article 155449 pp. (2012)
[10] Wong, D.; Wang, Y.; Jung, J.; Pezzini, S.; DaSilva, A. M.; Tsai, H.-Z.; Jung, H. S.; Khajeh, R.; Kim, Y.; Lee, J.; Kahn, S.; Tollabimazraehno, S.; Rasool, H.; Watanabe, K.; Taniguchi, T.; Zettl, A.; Adam, S.; MacDonald, A. H.; Crommie, M. F., Phys. Rev. B, 92, Article 155409 pp. (2015)
[11] Kim, K.; DaSilva, A.; Huang, S.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E., Proc. Natl. Acad. Sci., 114, 13, 3364-3369 (2017)
[12] Huang, S.; Kim, K.; Efimkin, D. K.; Lovorn, T.; Taniguchi, T.; Watanabe, K.; MacDonald, A. H.; Tutuc, E.; LeRoy, B. J., Phys. Rev. Lett., 121, Article 037702 pp. (2018)
[13] Rickhaus, P.; Wallbank, J.; Slizovskiy, S.; Pisoni, R.; Overweg, H.; Lee, Y.; Eich, M.; Liu, M.-H.; Watanabe, K.; Taniguchi, T.; Ihn, T.; Ensslin, K., Nano Lett., 18, 11, 6725-6730 (2018)
[14] Balents, L.; Dean, C. R.; Efetov, D. K.; Young, A. F., Nat. Phys., 16, 7, 725-733 (2020)
[15] Anderson, P. W., Science, 235, 4793, 1196-1198 (1987)
[16] Po, H. C.; Zou, L.; Vishwanath, A.; Senthil, T., Phys. Rev. X, 8, Article 031089 pp. (2018)
[17] Po, H. C.; Zou, L.; Senthil, T.; Vishwanath, A., Phys. Rev. B, 99, 19 (2019)
[18] Ahn, J.; Park, S.; Yang, B.-J., Phys. Rev. X, 9, 2, Article 021013 pp. (2019)
[19] Song, Z.; Wang, Z.; Shi, W.; Li, G.; Fang, C.; Bernevig, B. A., Phys. Rev. Lett., 123, Article 036401 pp. (2019)
[20] Kang, J.; Vafek, O., Phys. Rev. X, 8, Article 031088 pp. (2018)
[21] Carr, S.; Fang, S.; Zhu, Z.; Kaxiras, E., Phys. Rev. Research, 1, 013001 (2019)
[22] Tarnopolsky, G.; Kruchkov, A. J.; Vishwanath, A., Phys. Rev. Lett., 122, Article 106405 pp. (2019)
[23] Becker, S.; Embree, M.; Wittsten, J.; Zworski, M., Spectral characterization of magic angles in twisted bilayer graphene (2020)
[24] Popov, F. K.; Milekhin, A., Hidden wave function of twisted bilayer graphene: Flat band as a Landau level (2020)
[25] Wang, J.; Zheng, Y.; Millis, A. J.; Cano, J., Phys. Rev. Res., 3, Article 023155 pp. (2021)
[26] Naumis, G. G.; Navarro-Labastida, L. A.; Aguilar-Méndez, E., Reduction of the twisted bilayer graphene chiral Hamiltonian into a \(2 \times 2\) matrix operator and physical origin of flat-bands at magic angles (2021)
[27] Ren, Y.; Gao, Q.; MacDonald, A.; Niu, Q., Phys. Rev. Lett., 126, 1 (2021)
[28] Sheffer, Y.; Stern, A., Chiral magic-angle twisted bilayer graphene in a magnetic field: Landau level correspondence, exact wavefunctions and fractional chern insulators (2021)
[29] Khalaf, E.; Chatterjee, S.; Bultinck, N.; Zaletel, M. P.; Vishwanath, A., Sci. Adv., 7, 19 (2021)
[30] Chatterjee, S.; Bultinck, N.; Zaletel, M. P., Phys. Rev. B, 101, Article 165141 pp. (2020)
[31] Abanov, A.; Wiegmann, P., Nuclear Phys. B, 570, 3, 685-698 (2000) · Zbl 0951.81012
[32] Grover, T.; Senthil, T., Phys. Rev. Lett., 100, Article 156804 pp. (2008)
[33] Li, D.; Lee, K.; Wang, B. Y.; Osada, M.; Crossley, S.; Lee, H. R.; Cui, Y.; Hikita, Y.; Hwang, H. Y., Nature, 572, 7771, 624-627 (2019)
[34] Khalaf, E.; Kruchkov, A. J.; Tarnopolsky, G.; Vishwanath, A., Phys. Rev. B, 100, Article 085109 pp. (2019)
[35] Bistritzer, R.; MacDonald, A. H., Proc. Natl. Acad. Sci., 108, 30, 12233-12237 (2011)
[36] Nam, N. N.T.; Koshino, M., Phys. Rev. B, 96, Article 075311 pp. (2017)
[37] Lucignano, P.; Alfè, D.; Cataudella, V.; Ninno, D.; Cantele, G., Phys. Rev. B, 99, Article 195419 pp. (2019)
[38] Cantele, G.; Alfè, D.; Conte, F.; Cataudella, V.; Ninno, D.; Lucignano, P., Phys. Rev. Res., 2, Article 043127 pp. (2020)
[39] Ledwith, P. J.; Tarnopolsky, G.; Khalaf, E.; Vishwanath, A., Phys. Rev. Res., 2, Article 023237 pp. (2020)
[40] Bultinck, N.; Khalaf, E.; Liu, S.; Chatterjee, S.; Vishwanath, A.; Zaletel, M. P., Phys. Rev. X, 10, Article 031034 pp. (2020)
[41] Fogler, M. M., Stripe and bubble phases in quantum hall systems (2001), ArXiv Preprint arXiv:Cond-Mat/0111001
[42] Wang, J.; Cano, J.; Millis, A. J.; Liu, Z.; Yang, B., Exact Landau level description of geometry and interaction in a flatband (2021)
[43] Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D., Science, 365, 6453, 605-608 (2019)
[44] Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F., Science, 367, 6480, 900-903 (2020)
[45] Zhang, Y.-H.; Mao, D.; Senthil, T., Phys. Rev. Res., 1, Article 033126 pp. (2019)
[46] Bultinck, N.; Chatterjee, S.; Zaletel, M. P., Phys. Rev. Lett., 124, Article 166601 pp. (2020)
[47] Xie, M.; MacDonald, A. H., Phys. Rev. Lett., 124, Article 097601 pp. (2020)
[48] Haldane, F. D.M.; Rezayi, E. H., Phys. Rev. B, 31, 2529-2531 (1985)
[49] Haldane, F. D.M., Phys. Rev. Lett., 51, 605-608 (1983)
[50] Trugman, S. A.; Kivelson, S., Phys. Rev. B, 31, 5280-5284 (1985)
[51] Parameswaran, S. A.; Roy, R.; Sondhi, S. L., Phys. Rev. B, 85, Article 241308 pp. (2012)
[52] Roy, R., Phys. Rev. B, 90, Article 165139 pp. (2014)
[53] Parameswaran, S. A.; Roy, R.; Sondhi, S. L., Compt. R. Phys., 14, 9, 816-839 (2013), Topological insulators / Isolants topologiques
[54] Claassen, M.; Lee, C. H.; Thomale, R.; Qi, X.-L.; Devereaux, T. P., Phys. Rev. Lett., 114, Article 236802 pp. (2015)
[55] Repellin, C.; Dong, Z.; Zhang, Y.-H.; Senthil, T., Phys. Rev. Lett., 124, Article 187601 pp. (2020)
[56] Abouelkomsan, A.; Liu, Z.; Bergholtz, E. J., Phys. Rev. Lett., 124, Article 106803 pp. (2020)
[57] Wilhelm, P.; Lang, T. C.; Läuchli, A. M., Phys. Rev. B, 103, Article 125406 pp. (2021)
[58] Andrews, B.; Soluyanov, A., Phys. Rev. B, 101, Article 235312 pp. (2020)
[59] Girvin, S. M., (Aspects Topologiques de la Physique En Basse Dimension. Topological Aspects of Low Dimensional Systems (1999), Springer), 53-175 · Zbl 0993.81068
[60] Moon, K.; Mori, H.; Yang, K.; Girvin, S. M.; MacDonald, A. H.; Zheng, L.; Yoshioka, D.; Zhang, S.-C., Phys. Rev. B, 51, 5138-5170 (1995)
[61] Sondhi, S. L.; Karlhede, A.; Kivelson, S. A.; Rezayi, E. H., Phys. Rev. B, 47, 16419-16426 (1993)
[62] Liu, S.; Khalaf, E.; Lee, J. Y.; Vishwanath, A., Phys. Rev. Res., 3, Article 013033 pp. (2021)
[63] Zondiner, U.; Rozen, A.; Rodan-Legrain, D.; Cao, Y.; Queiroz, R.; Taniguchi, T.; Watanabe, K.; Oreg, Y.; von Oppen, F.; Stern, A.; Berg, E.; Jarillo-Herrero, P.; Ilani, S., Nature, 582, 7811, 203-208 (2020)
[64] Wong, D.; Nuckolls, K. P.; Oh, M.; Lian, B.; Xie, Y.; Jeon, S.; Watanabe, K.; Taniguchi, T.; Bernevig, B. A.; Yazdani, A., Nature, 582, 7811, 198-202 (2020)
[65] Cea, T.; Guinea, F., Phys. Rev. B, 102, Article 045107 pp. (2020)
[66] Soejima, T.; Parker, D. E.; Bultinck, N.; Hauschild, J.; Zaletel, M. P., Phys. Rev. B, 102, Article 205111 pp. (2020)
[67] Parker, D. E.; Soejima, T.; Hauschild, J.; Zaletel, M. P.; Bultinck, N., Phys. Rev. Lett., 127, 027601 (2021)
[68] Kang, J.; Vafek, O., Phys. Rev. B, 102, Article 035161 pp. (2020)
[69] Xie, F.; Cowsik, A.; Song, Z.-D.; Lian, B.; Bernevig, B. A.; Regnault, N., Phys. Rev. B, 103, 205416 (2021)
[70] Potasz, P.; Xie, M.; MacDonald, A. H., Phys. Rev. Lett., 127, 147203 (2021)
[71] Bernevig, B. A.; Song, Z.-D.; Regnault, N.; Lian, B., Phys. Rev. B, 103, 205413 (2021)
[72] Lian, B.; Song, Z.-D.; Regnault, N.; Efetov, D. K.; Yazdani, A.; Bernevig, B. A., Phys. Rev. B, 103, 205414 (2021)
[73] Khalaf, E.; Bultinck, N.; Vishwanath, A.; Zaletel, M. P., Soft modes in magic angle twisted bilayer graphene (2020), arXiv preprint arXiv:2009.14827
[74] Choi, Y.; Kim, H.; Peng, Y.; Thomson, A.; Lewandowski, C.; Polski, R.; Zhang, Y.; Arora, H. S.; Watanabe, K.; Taniguchi, T., Tracing out correlated chern insulators in magic angle twisted bilayer graphene (2020), arXiv preprint arXiv:2008.11746
[75] Wu, S.; Zhang, Z.; Watanabe, K.; Taniguchi, T.; Andrei, E. Y., Nature Mater., 20, 4, 488-494 (2021)
[76] Nuckolls, K. P.; Oh, M.; Wong, D.; Lian, B.; Watanabe, K.; Taniguchi, T.; Bernevig, B. A.; Yazdani, A., Nature, 588, 7839, 610-615 (2020)
[77] Saito, Y.; Ge, J.; Rademaker, L.; Watanabe, K.; Taniguchi, T.; Abanin, D. A.; Young, A. F., Nat. Phys., 17, 4, 478-481 (2021)
[78] Chatterjee, S.; Ippoliti, M.; Zaletel, M. P., Skyrmion superconductivity: DMRG evidence for a topological route to superconductivity (2020), arXiv preprint arXiv:2010.01144
[79] Witten, E., Nuclear Phys. B, 149, 2, 285-320 (1979)
[80] Polyakov, A. M.; Belavin, A., JETP Lett.. JETP Lett., Pisma Zh. Eksp. Teor. Fiz., 22, 503-248 (1975)
[81] Nelson, D. R.; Kosterlitz, J. M., Phys. Rev. Lett., 39, 1201-1205 (1977)
[82] d’Adda, A.; Lüscher, M.; Di Vecchia, P., Nuclear Phys. B, 146, 1, 63-76 (1978)
[83] Polyakov, A., (Gauge Fields and Strings. Gauge Fields and Strings, Contemporary concepts in physics (1987), Taylor & Francis) · Zbl 1440.81010
[84] Christos, M.; Sachdev, S.; Scheurer, M. S., Proc. Natl. Acad. Sci., 117, 47, 29543-29554 (2020) · Zbl 1485.82004
[85] Liu, Y.; Wang, Z.; Sato, T.; Hohenadler, M.; Wang, C.; Guo, W.; Assaad, F. F., Nature Commun., 10, 1 (2019)
[86] Carr, S.; Li, C.; Zhu, Z.; Kaxiras, E.; Sachdev, S.; Kruchkov, A., Nano Lett., 20, 5, 3030-3038 (2020)
[87] Song, Z.; Wang, Z.; Shi, W.; Li, G.; Fang, C.; Bernevig, B. A., Phys. Rev. Lett., 123, Article 036401 pp. (2019)
[88] Hejazi, K.; Liu, C.; Shapourian, H.; Chen, X.; Balents, L., Phys. Rev. B, 99, Article 035111 pp. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.