×

A computational approach to identify the material parameters of the relaxed micromorphic model. (English) Zbl 1539.74026

Summary: We determine the material parameters in the relaxed micromorphic generalized continuum model for a given periodic microstructure in this work. This is achieved through a least squares fitting of the total energy of the relaxed micromorphic homogeneous continuum to the total energy of the fully-resolved heterogeneous microstructure, governed by classical linear elasticity. We avoid establishing exact micro-macro transition relations, as in classical homogenization theory, because defining a representative volume element is not feasible in the absence of scale separation, as such an element does not exist. The relaxed micromorphic model is a generalized continuum that utilizes the Curl of a micro-distortion field instead of its full gradient as in the classical micromorphic theory, leading to several advantages and differences. The most crucial advantage is that it operates between two well-defined scales. These scales are determined by linear elasticity with microscopic and macroscopic elasticity tensors, which respectively bound the stiffness of the relaxed micromorphic continuum from above and below. While the macroscopic elasticity tensor is established a priori through standard periodic first-order homogenization, the microscopic elasticity tensor remains to be determined. Additionally, the characteristic length parameter, associated with curvature measurement, controls the transition between the micro- and macro-scales. Both the microscopic elasticity tensor and the characteristic length parameter are here determined using a computational approach based on the least squares fitting of energies. This process involves the consideration of an adequate number of quadratic deformation modes and different specimen sizes. We conduct a comparative analysis between the least square fitting results of the relaxed micromorphic model, the fitting of a skew-symmetric micro-distortion field (Cosserat-micropolar model), and the fitting of the classical micromorphic model with two different formulations for the curvature; one simplified formulation involving only one single characteristic length and a simplified isotropic curvature with three parameters. The relaxed micromorphic model demonstrates good agreement with the fully-resolved heterogeneous solution after optimizing only four parameters. The “simplified” full micromorphic model, which includes isotropic curvature and involves the optimization of seven parameters, does not achieve superior results, while the Cosserat model exhibits the poorest fitting.

MSC:

74A40 Random materials and composite materials
74Q15 Effective constitutive equations in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

AceFEM

References:

[1] Wheel, M.; Frame, J.; Riches, P., Is smaller always stiffer? On size effects in supposedly generalised continua, Int. J. Solids Struct., 67-68, 84-92, 2015
[2] Kirchhof, S.; Ams, A.; Hütter, G., On the question of the sign of size effects in the elastic behavior of foams, J. Elasticity, 2023
[3] Zohdi, T., Homogenization methods and multiscale modeling, (Encyclopedia of Computational Mechanics, 2004, John Wiley & Sons, Ltd)
[4] Zohdi, T.; Wriggers, P., An Introduction to Computational Micromechanics, 2005, Springer: Springer Berlin, Heidelberg · Zbl 1085.74001
[5] Eringen, A. C., Mechanics of micromorphic continua, (Mechanics of Generalized Continua, 1968, Springer: Springer Heidelberg), 18-35 · Zbl 0181.53802
[6] Suhubl, E. S.; Eringen, A. C., Nonlinear theory of micro-elastic solids-II, Internat. J. Engrg. Sci., 2, 4, 389-404, 1964
[7] Eringen, A. C., Theory of micromorphic materials with memory, Internat. J. Engrg. Sci., 10, 7, 623-641, 1972 · Zbl 0241.73116
[8] Cosserat, E.; Cosserat, F., Thèorie des corps dèformable, 1909, Librairie Scientifique A. Hermann et Fils, engl. translation by D. H. Delphenich, pdf available at ( http://www.mathematik.tu-darmstadt.de/fbereiche/analysis/pde/staff/neff/patrizio/Cosserat.html), reprint 2009 by Hermann Librairie Scientifique, ISBN 978 27056 6920 1, Paris
[9] Neff, P.; Jeong, J.; Münch, I.; Ramézani, H., Linear cosserat elasticity, conformal curvature and bounded stiffness, (Mechanics of Generalized Continua: One Hundred Years After the Cosserats, 2010, Springer: Springer New York), 55-63 · Zbl 1396.74012
[10] Forest, S., Strain gradient elasticity from capillarity to the mechanics of nano-objects, (Bertram, A.; Forest, S., Mechanics of Strain Gradient Materials, 2020, Springer International Publishing: Springer International Publishing Cham), 37-70
[11] Aifantis, E. C., On the gradient approach - Relation to Eringen’s nonlocal theory, Internat. J. Engrg. Sci., 49, 12, 1367-1377, 2011
[12] Askes, H.; Aifantis, E. C., Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct., 48, 13, 1962-1990, 2011
[13] Alavi, S. E.; Ganghoffer, J. F.; Reda, H.; Sadighi, M., Hierarchy of generalized continua issued from micromorphic medium constructed by homogenization, Contin. Mech. Thermodyn., 35, 6, 2163-2192, 2023
[14] Neff, P.; Ghiba, I.-D.; Madeo, A.; Placidi, L.; Rosi, G., A unifying perspective: the relaxed linear micromorphic continuum, Contin. Mech. Thermodyn., 26, 5, 639-681, 2014 · Zbl 1341.74135
[15] Madeo, A.; Neff, P.; Ghiba, I.-D.; Rosi, G., Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model, J. Mech. Phys. Solids, 95, 441-479, 2016 · Zbl 1482.74103
[16] Demore, F.; Rizzi, G.; Collet, M.; Neff, P.; Madeo, A., Unfolding engineering metamaterials design: Relaxed micromorphic modeling of large-scale acoustic meta-structures, J. Mech. Phys. Solids, 168, Article 104995 pp., 2022
[17] Lewintan, P.; Müller, S.; Neff, P., Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy, Calc. Var. Partial Differential Equations, 60, 4, 150, 2021 · Zbl 1471.35009
[18] Lewintan, P.; Neff, P., \( \mathit{L}^p\)-Trace-free generalized Korn inequalities for incompatible tensor fields in three space dimensions, Proc. R. Soc. Edinb.: Sect. A Math., 1-32, 2021
[19] Gmeineder, F.; Lewintan, P.; Neff, P., Optimal incompatible Korn-Maxwell-Sobolev inequalities in all dimensions, Calc. Var. Partial Differential Equations, 62, 6, 182, 2023 · Zbl 1518.35024
[20] Gmeineder, F.; Lewintan, P.; Neff, P., Korn-Maxwell-Sobolev inequalities for general incompatibilities, Math. Models Methods Appl. Sci., 2024 · Zbl 1541.35015
[21] Gourgiotis, P.; Rizzi, G.; Lewintan, P.; Bernardini, D.; Sky, A.; Madeo, A.; Neff, P., Green’s functions for the isotropic planar relaxed micromorphic model - Concentrated force and concentrated couple, Int. J. Solids Struct., 292, Article 112700 pp., 2024
[22] Neff, P.; Eidel, B.; d‘Agostino, M. V.; Madeo, A., Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization, J. Elasticity, 139, 269-298, 2020 · Zbl 1433.74014
[23] Sarhil, M.; Scheunemann, L.; Schröder, J.; Neff, P., Modeling the size-effect of metamaterial beams under bending via the relaxed micromorphic continuum, Proc. Appl. Math. Mech., 22, 1, Article e202200033 pp., 2023
[24] Sarhil, M.; Scheunemann, L.; Schröder, J.; Neff, P., On the identification of material parameters in the relaxed micromorphic continuum, Proc. Appl. Math. Mech., 23, 3, Article e202300056 pp., 2023
[25] Sarhil, M.; Scheunemann, L.; Schröder, J.; Neff, P., Size-effects of metamaterial beams subjected to pure bending: on boundary conditions and parameter identification in the relaxed micromorphic model, Comput. Mech., 72, 5, 1091-1113, 2023 · Zbl 1528.74061
[26] Forest, S.; Sab, K., Cosserat overall modeling of heterogeneous materials, Mech. Res. Commun., 25, 4, 449-454, 1998 · Zbl 0949.74054
[27] Hütter, G., On the micro-macro relation for the microdeformation in the homogenization towards micromorphic and micropolar continua, J. Mech. Phys. Solids, 127, 62-79, 2019
[28] Reda, H.; Alavi, S. E.; Nasimsobhan, M.; Ganghoffer, J.-F., Homogenization towards chiral Cosserat continua and applications to enhanced Timoshenko beam theories, Mech. Mater., 155, Article 103728 pp., 2021
[29] Sarar, B. C.; Yildizdag, M. E.; Abali, B. E., Comparison of homogenization techniques in strain gradient elasticity for determining material parameters, (Altenbach, H.; Berezovski, A.; dell’Isola, F.; Porubov, A., Sixty Shades of Generalized Continua: Dedicated To the 60th Birthday of Prof. Victor a. Eremeyev, 2023, Springer International Publishing), 631-644
[30] Abali, B. E.; Barchiesi, E., Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization, Contin. Mech. Thermodyn., 33, 993-1009, 2021
[31] Abali, B. E.; Yang, H.; Papadopoulos, P., A computational approach for determination of parameters in generalized mechanics, (Altenbach, H.; Müller, W. H.; Abali, B. E., Higher Gradient Materials and Related Generalized Continua, 2019, Springer International Publishing: Springer International Publishing Cham), 1-18
[32] Bacigalupo, A.; Paggi, M.; Dal Corso, F.; Bigoni, D., Identification of higher-order continua equivalent to a Cauchy elastic composite, Mech. Res. Commun., 93, 11-22, 2018, Mechanics from the 20th to the 21st Century: The Legacy of Gérard A. Maugin
[33] Khakalo, S.; Niiranen, J., Anisotropic strain gradient thermoelasticity for cellular structures: Plate models, homogenization and isogeometric analysis, J. Mech. Phys. Solids, 134, Article 103728 pp., 2020 · Zbl 1481.74108
[34] Lahbazi, A.; Goda, I.; Ganghoffer, J.-F., Size-independent strain gradient effective models based on homogenization methods: Applications to 3D composite materials, pantograph and thin walled lattices, Compos. Struct., 284, Article 115065 pp., 2022
[35] Schmidt, F.; Krüger, M.; Keip, M.-A.; Hesch, C., Computational homogenization of higher-order continua, Internat. J. Numer. Methods Engrg., 123, 11, 2499-2529, 2022 · Zbl 1536.74211
[36] Skrzat, A.; Eremeyev, V. A., On the effective properties of foams in the framework of the couple stress theory, Contin. Mech. Thermodyn., 32, 1779-1801, 2020
[37] Weeger, O., Numerical homogenization of second gradient, linear elastic constitutive models for cubic 3D beam-lattice metamaterials, Int. J. Solids Struct., 224, Article 111037 pp., 2021
[38] Yang, H.; Müller, W. H., Size effects of mechanical metamaterials: a computational study based on a second-order asymptotic homogenization method, Arch. Appl. Mech., 91, 1037-1053, 2021
[39] Yang, H.; Abali, B. E.; Timofeev, D.; Müller, W. H., Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis, Contin. Mech. Thermodyn., 32, 1251-1270, 2020
[40] Yang, H.; Abali, B. E.; Müller, W. H.; Barboura, S.; Li, J., Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum, Int. J. Solids Struct., 238, Article 111386 pp., 2022
[41] Alavi, S. E.; Ganghoffer, J.-F.; Reda, H.; Sadighi, M., Construction of micromorphic continua by homogenization based on variational principles, J. Mech. Phys. Solids, 153, Article 104278 pp., 2021
[42] Biswas, R.; Poh, L. H., A micromorphic computational homogenization framework for heterogeneous materials, J. Mech. Phys. Solids, 102, 187-208, 2017
[43] Forest, S., Homogenization methods and mechanics of generalized continua - part 2, Theor. Appl. Mech., 28-29, 113-144, 2002 · Zbl 1150.74401
[44] Hütter, G., Interpretation of micromorphic constitutive relations for porous materials at the microscale via harmonic decomposition, J. Mech. Phys. Solids, Article 105135 pp., 2022
[45] Hütter, G., Homogenization of a Cauchy continuum towards a micromorphic continuum, J. Mech. Phys. Solids, 99, 394-408, 2017
[46] Rokoš, O.; Ameen, M. M.; Peerlings, R. H.J.; Geers, M. G.D., Micromorphic computational homogenization for mechanical metamaterials with patterning fluctuation fields, J. Mech. Phys. Solids, 123, 119-137, 2019 · Zbl 1474.74087
[47] Rokoš, O.; Ameen, M. M.; Peerlings, R. H.J.; Geers, M. G.D., Extended micromorphic computational homogenization for mechanical metamaterials exhibiting multiple geometric pattern transformations, Extreme Mech. Lett., 37, Article 100708 pp., 2020
[48] Rokoš, O.; Zeman, J.; Doškář, M.; Krysl, P., Reduced integration schemes in micromorphic computational homogenization of elastomeric mechanical metamaterials, Adv. Model. Simul. Eng. Sci., 7, 2020
[49] Zhi, J.; Poh, L. H.; Tay, T.-E.; Tan, V. B.C., Direct FE2 modeling of heterogeneous materials with a micromorphic computational homogenization framework, Comput. Methods Appl. Mech. Engrg., 393, Article 114837 pp., 2022 · Zbl 1507.74360
[50] Trinh, D.; Janicke, R.; Auffray, N.; Diebels, S.; Forest, S., Evaluation of generalized continuum substitution models for heterogeneous materials, Int. J. Multiscale Comput. Eng., 10, 6, 527-549, 2012
[51] Ganghoffer, J.-F.; Wazne, A.; Reda, H., Frontiers in homogenization methods towards generalized continua for architected materials, Mech. Res. Commun., 130, Article 104114 pp., 2023
[52] von Hoegen, Y.; Hellebrand, S.; Scheunemann, L.; Schröder, J., On the realization of periodic boundary conditions for hexagonal unit cells, Finite Elem. Anal. Des., 229, Article 104067 pp., 2024
[53] Bacigalupo, A.; Gambarotta, L., Second-order computational homogenization of heterogeneous materials with periodic microstructure, Z. Angew. Math. Mech., 90, 10-11, 796-811, 2010 · Zbl 1380.74102
[54] Forest, S.; Trinh, D., Generalized continua and non-homogeneous boundary conditions in homogenisation methods, Z. Angew. Math. Mech., 91, 2, 90-109, 2011 · Zbl 1370.74130
[55] Jänicke, R.; Steeb, H., Minimal loading conditions for higher-order numerical homogenisation schemes, Arch. Appl. Mech., 82, 8, 1075-1088, 2012 · Zbl 1293.74358
[56] d’Agostino, M. V.; Martin, R.; Lewintan, P.; Bernardini, D.; Danescu, A.; Neff, P., On the representation of fourth and higher order anisotropic elasticity tensors in generalized continuum models, 2024, https://arxiv.org/abs/2401.08670
[57] Eringen, A. C.; Suhubi, E. S., Nonlinear theory of simple micro-elastic solids-I, Internat. J. Engrg. Sci., 2, 2, 189-203, 1964 · Zbl 0138.21202
[58] Mindlin, R. D., Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., 16, 51-78, 1964 · Zbl 0119.40302
[59] Schröder, J.; Sarhil, M.; Scheunemann, L.; Neff, P., Lagrange and \(H ( \text{curl} , \mathcal{B} )\) based finite element formulations for the relaxed micromorphic model, Comput. Mech., 70, 1309-1333, 2022 · Zbl 1509.74048
[60] Barbagallo, G.; Madeo, A.; d’Agostino, M. V.; Abreu, R.; Ghiba, I.-D.; Neff, P., Transparent anisotropy for the relaxed micromorphic model: Macroscopic consistency conditions and long wave length asymptotics, Int. J. Solids Struct., 120, 7-30, 2017
[61] Sky, A.; Neunteufel, M.; Münch, I.; Schöberl, J.; Neff, P., A hybrid \(H^1 \times H ( \operatorname{curl} )\) finite element formulation for a relaxed micromorphic continuum model of antiplane shear, Comput. Mech., 68, 1-24, 2021 · Zbl 1480.74291
[62] Rizzi, G.; Hütter, G.; Madeo, A.; Neff, P., Analytical solutions of the simple shear problem for micromorphic models and other generalized continua, Arch. Appl. Mech., 91, 2237-2254, 2021
[63] Rizzi, G.; Hütter, G.; Madeo, A.; Neff, P., Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua, Contin. Mech. Thermodyn., 33, 1505-1539, 2021 · Zbl 1537.74245
[64] d’Agostino, M. V.; Rizzi, G.; Khan, H.; Lewintan, P.; Madeo, A.; Neff, P., The consistent coupling boundary condition for the classical micromorphic model: existence, uniqueness and interpretation of the parameters, Contin. Mech. Thermodyn., 2022
[65] Sarhil, M.; Scheunemann, L.; Neff, P.; Schröder, J., On a tangential-conforming finite element formulation for the relaxed micromorphic model in 2D, Proc. Appl. Math. Mech., 21, 1, Article e202100187 pp., 2021
[66] Sky, A.; Neunteufel, M.; Münch, I.; Schöberl, J.; Neff, P., Primal and mixed finite element formulations for the relaxed micromorphic model, Comput. Methods Appl. Mech. Engrg., 399, Article 115298 pp., 2022 · Zbl 1507.74048
[67] Sky, A.; Muench, I.; Rizzi, G.; Neff, P., Higher order Bernstein-Bézier and Nédélec finite elements for the relaxed micromorphic model, J. Comput. Appl. Math., 438, Article 115568 pp., 2024 · Zbl 07756773
[68] Sky, A.; Neunteufel, M.; Lewintan, P.; Zilian, A.; Neff, P., Novel H(symCurl)-conforming finite elements for the relaxed micromorphic sequence, Comput. Methods Appl. Mech. Engrg., 418, Article 116494 pp., 2024 · Zbl 1539.74475
[69] Nédélec, J. C., Mixed finite elements in \(\operatorname{R}^3\), Numer. Math., 35, 3, 315-341, 1980 · Zbl 0419.65069
[70] Nédélec, J. C., A new family of mixed finite elements in \(\operatorname{R}^3\), Numer. Math., 50, 57-81, 1986 · Zbl 0625.65107
[71] Korelc, J.; Wriggers, P., Automation of Finite Element Methods, 2016, Springer International Publishing · Zbl 1367.74001
[72] Korelc, J., Automation of primal and sensitivity analysis of transient coupled problems, Comput. Mech., 44, 5, 631-649, 2009 · Zbl 1171.74043
[73] d‘Agostino, M. V.; Barbagallo, G.; Ghiba, I.-D.; Eidel, B.; Neff, P.; Madeo, A., Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model, J. Elasticity, 139, 299-329, 2020 · Zbl 1433.74009
[74] Norris, A. N., The isotropic material closest to a given anisotropic material, J. Mech. Mater. Struct., 1, 2, 223-238, 2006
[75] Alavi, S.; Ganghoffer, J.; Sadighi, M.; Nasimsobhan, M.; Akbarzadeh, A., Continualization method of lattice materials and analysis of size effects revisited based on Cosserat models, Int. J. Solids Struct., 254-255, Article 111894 pp., 2022
[76] Blesgen, T.; Neff, P., Simple shear in nonlinear Cosserat micropolar elasticity: Existence of minimizers, numerical simulations, and occurrence of microstructure, Math. Mech. Solids, 2022, 10812865221122191
[77] Ghiba, I.-D.; Rizzi, G.; Madeo, A.; Neff, P., Cosserat micropolar elasticity: classical Eringen vs. dislocation form, J. Mech. Mater. Struct., 18, 93-123, 2023
[78] Khan, H.; Ghiba, I.-D.; Madeo, A.; Neff, P., Existence and uniqueness of Rayleigh waves in isotropic elastic Cosserat materials and algorithmic aspects, Wave Motion, 110, Article 102898 pp., 2022 · Zbl 1524.74232
[79] Jeong, J.; Ramézani, H.; Münch, I.; Neff, P., A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature, Z. Angew. Math. Mech., 89, 7, 552-569, 2009 · Zbl 1167.74004
[80] Jeong, J.; Neff, P., Existence, uniqueness and stability in linear cosserat elasticity for weakest curvature conditions, Math. Mech. Solids, 15, 1, 78-95, 2010 · Zbl 1197.74009
[81] Neff, P.; Jeong, J., A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy, Z. Angew. Math. Mech., 89, 2, 107-122, 2009 · Zbl 1157.74002
[82] Neff, P.; Jeong, J.; Fischle, A., Stable identification of linear isotropic cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature, Acta Mech., 211, 3, 237-249, 2010 · Zbl 1397.74011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.