×

On the decay rate of the false vacuum. (English) Zbl 1152.81649

Summary: The finite size theory of metastability in a quartic potential is developed by the semiclassical path integral method. In the quantum regime, the relation between temperature and classical particle energy is found in terms of the first complete elliptic integral. At the sphaleron energy, the criterion which defines the extension of the quantum regime is recovered. Within the latter, the temperature effects on the fluctuation spectrum are evaluated by the functional determinants method and computed. The eigenvalue which causes metastability is determined as a function of size/temperature by solving a Lamé equation. The ground state lifetime shows remarkable deviations with respect to the result of the infinite size theory.

MSC:

81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
33E05 Elliptic functions and integrals

References:

[1] DOI: 10.1016/0003-4916(67)90200-X · doi:10.1016/0003-4916(67)90200-X
[2] DOI: 10.1103/PhysRevD.16.1762 · doi:10.1103/PhysRevD.16.1762
[3] DOI: 10.1103/PhysRevD.16.1762 · doi:10.1103/PhysRevD.16.1762
[4] DOI: 10.1063/1.1666102 · doi:10.1063/1.1666102
[5] DOI: 10.1063/1.430676 · doi:10.1063/1.430676
[6] Schulman L. S., Techniques and Applications of Path Integration (1981) · Zbl 0587.28010
[7] DOI: 10.1103/PhysRevLett.46.388 · doi:10.1103/PhysRevLett.46.388
[8] DOI: 10.1103/PhysRevB.36.1931 · doi:10.1103/PhysRevB.36.1931
[9] DOI: 10.1103/RevModPhys.59.1 · doi:10.1103/RevModPhys.59.1
[10] DOI: 10.1103/RevModPhys.49.681 · doi:10.1103/RevModPhys.49.681
[11] DOI: 10.1063/1.2435601 · Zbl 1121.81095 · doi:10.1063/1.2435601
[12] Gradshteyn I. S., Tables of Integrals, Series and Products (1965)
[13] DOI: 10.1016/S0370-2693(97)00628-X · doi:10.1016/S0370-2693(97)00628-X
[14] Abramowitz M., Handbook of Mathematical Functions (1972) · Zbl 0543.33001
[15] Zamolodchikov A., J. Phys. A 39 pp 12863– (2006) · Zbl 1129.81057 · doi:10.1088/0305-4470/39/41/S09
[16] Goldanskii V. I., Sov. Phys. Dokl. 4 pp 74– (1959)
[17] DOI: 10.1103/PhysRevA.46.8011 · doi:10.1103/PhysRevA.46.8011
[18] Larkin A. I., Sov. Phys. JETP 59 pp 420– (1984)
[19] DOI: 10.1103/RevModPhys.70.323 · Zbl 1205.81132 · doi:10.1103/RevModPhys.70.323
[20] DOI: 10.1103/PhysRevB.56.3130 · doi:10.1103/PhysRevB.56.3130
[21] DOI: 10.1063/1.1703636 · Zbl 0092.45105 · doi:10.1063/1.1703636
[22] DOI: 10.1007/BF01391828 · Zbl 0602.58044 · doi:10.1007/BF01391828
[23] Coleman S., Aspects of Symmetry: Selected Lectures of Sidney Coleman (1985) · doi:10.1017/CBO9780511565045
[24] DOI: 10.1088/0305-4470/37/16/014 · Zbl 1064.34016 · doi:10.1088/0305-4470/37/16/014
[25] DOI: 10.1088/0305-4470/37/16/014 · Zbl 1064.34016 · doi:10.1088/0305-4470/37/16/014
[26] DOI: 10.1007/BF02099666 · Zbl 0734.58043 · doi:10.1007/BF02099666
[27] Lesch M., Math. Nachr. 194 pp 139– (1998) · Zbl 0924.58107 · doi:10.1002/mana.19981940110
[28] Kleinert H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physycs and Financial Markets (2004) · Zbl 1060.81004 · doi:10.1142/5057
[29] DOI: 10.1103/RevModPhys.62.251 · doi:10.1103/RevModPhys.62.251
[30] DOI: 10.1016/S0375-9601(98)00380-6 · Zbl 0941.81047 · doi:10.1016/S0375-9601(98)00380-6
[31] Landau L. D., Quantum Mechanics, 3. ed. (1977)
[32] Whittaker E. T., A Course of Modern Analysis, 4. ed. (1927)
[33] DOI: 10.1088/0305-4470/20/10/011 · Zbl 0639.34042 · doi:10.1088/0305-4470/20/10/011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.