×

Finite-size effects on traveling wave solutions to neural field equations. (English) Zbl 1395.92041

Summary: Neural field equations are used to describe the spatio-temporal evolution of the activity in a network of synaptically coupled populations of neurons in the continuum limit. Their heuristic derivation involves two approximation steps. Under the assumption that each population in the network is large, the activity is described in terms of a population average. The discrete network is then approximated by a continuum. In this article we make the two approximation steps explicit. Extending a model by Bressloff and Newby, we describe the evolution of the activity in a discrete network of finite populations by a Markov chain. In order to determine finite-size effects – deviations from the mean-field limit due to the finite size of the populations in the network – we analyze the fluctuations of this Markov chain and set up an approximating system of diffusion processes. We show that a well-posed stochastic neural field equation with a noise term accounting for finite-size effects on traveling wave solutions is obtained as the strong continuum limit.

MSC:

92C20 Neural biology
60J20 Applications of Markov chains and discrete-time Markov processes on general state spaces (social mobility, learning theory, industrial processes, etc.)
60F05 Central limit and other weak theorems

References:

[1] Amari, S, Dynamics of pattern formation in lateral-inhibition type neural fields, Biol Cybern, 27, 77-87, (1977) · Zbl 0367.92005 · doi:10.1007/BF00337259
[2] Wilson, HR; Cowan, JD, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys J, 12, 1-24, (1972) · doi:10.1016/S0006-3495(72)86068-5
[3] Wilson, HR; Cowan, JD, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, 13, 55-80, (1973) · Zbl 0281.92003 · doi:10.1007/BF00288786
[4] Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. New York: Springer; 2010. · Zbl 1320.92002 · doi:10.1007/978-0-387-87708-2
[5] Coombes S, beim Graben P, Potthast R, Wright J. Neural fields—theory and applications. Berlin: Springer; 2014. · Zbl 1291.92004
[6] Ermentrout, GB, Neural networks as spatio-temporal pattern-forming systems, Rep Prog Phys, 61, 353-430, (1998) · doi:10.1088/0034-4885/61/4/002
[7] Bressloff, PC, Spatiotemporal dynamics of continuum neural fields, J Phys A, 45, (2011) · Zbl 1263.92008 · doi:10.1088/1751-8113/45/3/033001
[8] Bressloff PC. Waves in neural media. New York: Springer; 2014. · Zbl 1296.92005 · doi:10.1007/978-1-4614-8866-8
[9] Ermentrout, GB; McLeod, JB, Existence and uniqueness of travelling waves for a neural network, Proc R Soc Edinb A, 123, 461-478, (1993) · Zbl 0797.35072 · doi:10.1017/S030821050002583X
[10] Bressloff, PC; Newby, JM, Metastability in a stochastic neural network modeled as a velocity jump Markov process, SIAM J Appl Dyn Syst, 12, 1394-1435, (2013) · Zbl 1278.92005 · doi:10.1137/120898978
[11] Bressloff, PC, Stochastic neural field theory and the system-size expansion, SIAM J Appl Math, 70, 1488-1521, (2009) · Zbl 1198.92007 · doi:10.1137/090756971
[12] Buice, MA; Cowan, JD, Field-theoretic approach to fluctuation effects in neural networks, Phys Rev E, 75, (2007) · doi:10.1103/PhysRevE.75.051919
[13] Riedler, MG; Buckwar, E, Laws of large numbers and Langevin approximations for stochastic neural field equations, J Math Neurosci, 3, (2013) · Zbl 1295.60030 · doi:10.1186/2190-8567-3-1
[14] Riedler, MG; Thieullen, M; Wainrib, G, Limit theorems for infinite-dimensional piecewise deterministic Markov processes. applications to stochastic excitable membrane models, Electron J Probab, 17, (2012) · Zbl 1255.60126 · doi:10.1214/EJP.v17-1946
[15] Buice, MA; Cowan, JD; Chow, CC, Systematic fluctuation expansion for neural network activity equations, Neural Comput, 22, 377-426, (2010) · Zbl 1183.92013 · doi:10.1162/neco.2009.02-09-960
[16] Lang, E, Multiscale analysis of traveling waves in stochastic neural fields, SIAM J Appl Dyn Syst, 15, 1581-1614, (2016) · Zbl 1347.60078 · doi:10.1137/15M1033927
[17] Lang, E; Stannat, W, \(L^{2}\)-stability of traveling wave solutions to nonlocal evolution equations, J Differ Equ, 261, 4275-4297, (2016) · Zbl 1347.35062 · doi:10.1016/j.jde.2016.06.021
[18] Lang E. Traveling waves in stochastic neural fields [PhD thesis]. Technische Universität Berlin; 2016. doi:10.14279/depositonce-5019. · Zbl 1347.60078
[19] Chen, F, Travelling waves for a neural network, Electron J Differ Equ, 2003, (2003) · Zbl 1034.35063
[20] Kallenberg O. Foundations of modern probability. 2nd ed. New York: Springer; 2002. · Zbl 0996.60001 · doi:10.1007/978-1-4757-4015-8
[21] Stroock DW. An introduction to Markov processes. Berlin: Springer; 2014. · Zbl 1295.60002 · doi:10.1007/978-3-642-40523-5
[22] Ethier SN, Kurtz TG. Markov processes: characterization and convergence. New York: Wiley; 1986. · Zbl 0592.60049 · doi:10.1002/9780470316658
[23] Prévôt C, Röckner M. A concise course on stochastic partial differential equations. Berlin: Springer; 2007. · Zbl 1123.60001
[24] Da Prato G, Zabczyk J. Stochastic equations in infinite dimensions. 2nd ed. Cambridge: Cambridge University Press; 2014. · Zbl 1317.60077 · doi:10.1017/CBO9781107295513
[25] Bressloff, PC, Metastable states and quasicycles in a stochastic Wilson-cowan model of neuronal population dynamics, Phys Rev E, 82, (2010) · doi:10.1103/PhysRevE.82.051903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.