×

A closed-form, hierarchical, multi-interphase model for composites-derivation, verification and application to nanocomposites. (English) Zbl 1225.74028

Summary: A closed form Hierarchical Multi-interphase Model (HMM) based on the classical elasticity theory is proposed to study the influence of the interphase around inclusions on the enhancement mechanism of composites in the elastic regime. The HMM is verified by three-dimensional Finite Element simulations and highly consistent results are obtained for the cases with relatively low stiffness ratios (SR) between the inclusions and the matrix (SR<100). For cases with large SRs (up to 10,000), the HMM with the assumption of ellipsoidal inclusions provides a lower bound for the stiffnesses of composites enhanced by non-ellipsoidal particles with the same aspect ratio of inclusions. The Modified Hierarchical Multi-interphase Model (MHMM) is developed by introducing morphology parameters to the HMM, to capture the high morphology sensitivity of composites at high SRs with the non-uniform stress – strain fields. In addition, one important feature of the HMM and the MHMM is the particle-size dependency. As an application of this model to predict size effects and shape effects, the enhancement efficiencies of three typical inclusions – sphere, fiber-like particle and platelet – at different scales, are studied and compared, producing useful information about the morphology optimization at the nano-scale.

MSC:

74E30 Composite and mixture properties
74S05 Finite element methods applied to problems in solid mechanics
74M25 Micromechanics of solids
Full Text: DOI

References:

[1] Barnard, A. S.; Curtiss, L. A., Computational nano-morphology: modeling shape as well as size, Reviews on Advanced Materials Science, 10, 105-109 (2005)
[2] Baschnagel, J.; Binder, K., On the influence of hard walls on structural properties in polymer glass simulation, Macromolecules, 28, 6808-6818 (1995)
[3] Benveniste, Y., On a new approach to the application of Mori-Tanaka’s theory in composite materials, Mechanics of Materials, 6, 2, 147-157 (1987)
[4] Benveniste, Y.; Dvorak, G. J.; Chen, T., Stress fields in composites with coated inclusions, Mechanics of Materials, 7, 305-317 (1989)
[5] Benveniste, Y.; Dvorak, G. J.; Chen, T., On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media, Journal of Mechanics and Physics of Solids, 39, 927-946 (1991) · Zbl 0754.73018
[6] Benveniste, Y.; Dvorak, G. J.; Chen, T., On effective properties of composites with coated cylindrically orthotropic fibres, Mechanics of Materials, 12, 289-297 (1991)
[7] Berryman, J. G.; Berge, P. A., Critique of two explicit schemes for estimating elastic properties of multiphase composites, Mechanics of Materials, 22, 2, 149-164 (1996)
[8] Bradshaw, R. D.; Fisher, F. T.; Brison, L. C., Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor, Composites Science and Technology, 63, 1705-1722 (2003)
[9] Budiansky, B., On the elastic moduli of some heterogeneous materials, Journal of Mechanics and Physics of Solids, 13, 223-227 (1965)
[10] Castaneda, P.; Willis, J. R., The effect of spatial distribution on the effective behavior of composite materials and cracked media, Journal of the Mechanics and Physics of Solids, 43, 1919-1951 (1995) · Zbl 0919.73061
[11] Chen, T.; Dvorak, G. J.; Benveniste, Y., Stress fields in composites reinforced with cylindrically orthotropic fibres, Mechanics of Materials, 9, 17-32 (1990)
[12] Christensen, R. M.; Lo, K. H., Solution for effective shear properties in three phase sphere and cylinder models, Journal of Mechanics and Physics of Solids, 27, 4, 315-330 (1979) · Zbl 0419.73007
[13] Dai, L. H.; Huang, Z. P.; Wang, R., A Generalize self-consistent Mori—Tanaka Scheme for prediction of the effective elastic moduli of hybrid multiphase particulate composites, Polymer Composite, 19, 5, 506-513 (1998)
[14] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proceedings of the Royal Society London, Series A, A241, 376-396 (1957) · Zbl 0079.39606
[15] Eshelby, J. D., The elastic field outside an ellipsoidal inclusion, Proceedings of the Royal Society London, Series A, A252, 561-569 (1959) · Zbl 0092.42001
[16] Eshelby, J. D., Elastic inclusions and inhomogeneities, (Sneddon, I. N.; Hill, R., Progress in Solid Mechanics, 2 (1961), North Holland: North Holland Amsterdam), 89-140 · Zbl 0097.39404
[17] Fertig, R. S.; Garnich, M. R., Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite, Composites Science and Technology, 64, 2577-2588 (2004)
[18] Fossey,S., 2002. Atomistic modeling of polymer matrices in nanocomposites. Nanocomposites 2002: delivering new value to polymers conference proceedings. Executive Conference Management, San Diego, CA.; Fossey,S., 2002. Atomistic modeling of polymer matrices in nanocomposites. Nanocomposites 2002: delivering new value to polymers conference proceedings. Executive Conference Management, San Diego, CA.
[19] Ginzburg, V. V.; Balazs, A. C., Calculating phase diagrams of polymer-platelet mixtures using density functional theory: implications for polymer/clay composites, Macromolecules, 32, 5681-5688 (1999)
[20] Hbaieb, K.; Wang, Q. X.; Chia, Y. H.J.; Cotterell, B., Modelling stiffness of polymer/clay nanocomposite, Polymer, 48, 901-909 (2007)
[21] Helfand, E.; Tagami, Y., Theory of the interface between immiscible polymers. II, Journal of Chemistry and Physics, 56, 3592-3601 (1972)
[22] Hill, R., A self-consistent mechanics of composite materials, Journal of Mechanics and Physics of Solids, 13, 213-222 (1965)
[23] Huang, Y.; Hu, K. X.; Wei, X.; Chandra, A., A Generalized self-consistent mechanics method for composite materials with multiphase inclusions, Journal of Mechanics and Physics of Solids, 42, 491 (1994) · Zbl 0794.73039
[24] Ji, X. L., Tensile modulus of polymer nanocomposites, Polymer Engineering and Science, 42, 5, 983-993 (2002)
[25] Jiang, L. Y.; Huang, Y.; Jiang, H.; Ravichandran, G.; Gao, H.; Hwang, K. C.; Liu, B., A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids, 54, 2436-2452 (2006) · Zbl 1120.74324
[26] Kaushik, A. K.; Podsiadlo, P.; Qin, M.; Shaw, C. M.; Waas, A. M.; Kotov, N. A.; Arruda, E. M., The role of nanoparticle separation in the finite deformation response of polyurethane-clay nanocomposites, Macromolecules, 42, 17, 6588-6955 (2009)
[27] Li, J. Y., On micromechanics approximation for the effective thermoelastic moduli of multiphase composite materials, Mechanics of Materials, 31, 149-159 (1999)
[28] Li, Y., Waas, A.M., Arruda, E.M., 2008a. A particle size-shape-dependent three-phase two-step Mori-Tanaka method for studying of the interphase and particle size and shape effects of polymer/clay nanocomposites. In: Proceeding of the 2008 ASME International Mechanical Engineering Congress & Exposition (IMECE), vol. 13, pp. 225-232.; Li, Y., Waas, A.M., Arruda, E.M., 2008a. A particle size-shape-dependent three-phase two-step Mori-Tanaka method for studying of the interphase and particle size and shape effects of polymer/clay nanocomposites. In: Proceeding of the 2008 ASME International Mechanical Engineering Congress & Exposition (IMECE), vol. 13, pp. 225-232.
[29] Li, Y., Waas, A.M., Arruda, E.M., 2008b. A non-local visco-plastic model with strain gradient effects and interphase effects for simulating the stiffness and yield strength of a class of polymer nanocomposites. In: Proceeding of the 2008 ASME International Mechanical Engineering Congress & Exposition (IMECE), vol. 13, pp. 1119-1126.; Li, Y., Waas, A.M., Arruda, E.M., 2008b. A non-local visco-plastic model with strain gradient effects and interphase effects for simulating the stiffness and yield strength of a class of polymer nanocomposites. In: Proceeding of the 2008 ASME International Mechanical Engineering Congress & Exposition (IMECE), vol. 13, pp. 1119-1126.
[30] Li, Y., Waas, A.M., Arruda, E.M., 2010. The effects of the interphase and strain gradients on the elasticity of layer by layer (LBL) polymer/clay nanocomposites. International Journal of Solids and Structures, in review.; Li, Y., Waas, A.M., Arruda, E.M., 2010. The effects of the interphase and strain gradients on the elasticity of layer by layer (LBL) polymer/clay nanocomposites. International Journal of Solids and Structures, in review. · Zbl 1236.74060
[31] Lim, T. C., Simplified model for the influence of inclusion aspect ratio on the stiffness of aligned reinforced composites, Journal of Reinforced Plastics and Composites, 22, 4, 301-325 (2003)
[32] Lim, T. C., Size-dependency of nano-scale inclusions, Journal of Materials Science, 40, 3841-3842 (2005)
[33] Lipatov, Y. S.; Nesterov, A. E., Thermodynamics of polymer blends, Polymer Thermodynamics Library, vol1 (1997)
[34] Liu, H.; Brinson, L. C., A hybrid numerical-analytical method for modeling the viscoelastic properties of polymer nanocomposites, Transactions of the ASME, Vol. 73, 758-768 (2006) · Zbl 1111.74525
[35] Liu, H.; Brinson, L. C., Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites, Composite Science and Technology, 68, 1502-1512 (2008)
[36] Liu, R. Y.F.; Bernal-Lara, T. E., Interphase materials by forced assembly of glassy polymers, Macromolecules, 37, 6972-6979 (2004)
[37] Liu, X.; Hu, G., Contimuum micromechanical theory of overall plasticity for particulate composites including particle size effect, International Journal of Plasticity, 21, 777-799 (2005) · Zbl 1112.74315
[38] Lyu, S.; Grailera, T.; Belua, A.; Schleya, J.; Bartletta, T.; Hobota, C.; Sparera, R.; Unterekera, D., Nano-adsorbents control surface properties of polyurethane, Polymer, 48, 20, 6049-6055 (2007)
[39] Markenscoff, X., On the shape of the Eshelby inclusions, Journal of Elasticity, 49, 163-166 (1998) · Zbl 0906.73014
[40] Mori, T.; Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica et Materialia, 21, 571-574 (1973)
[41] Miwa, Y.; Drews, A. R.; Schlick, S., Detection of the direct effect of clay on polymer dynamics: the case of spin-labeled poly (methyl acrylate)/clay nanocomposites studied by ESR, XRD, and DSC, Macromolecules, 39, 3304-3311 (2006)
[42] Mura, T.; Shodja, H. M.; Lin, T. Y.; Safadi, A.; Makkawy, A., The determination of the elastic field of a pentagonal star shaped inclusion, Bulletin of the Technical University of Istanbul, 47, 267-280 (1994) · Zbl 0859.73011
[43] Nozaki, H.; Taya, M., Elastic fields in a polygon-shaped inclusion with uniform eigenstrains, Journal of Applied Mechanics, 64, 495-502 (1997) · Zbl 0899.73316
[44] Nozaki, H.; Taya, M., Elastic fields in a polyhedral inclusion with uniform eigenstrains and related problems, Journal of Applied Mechanics, 68, 441-452 (2001) · Zbl 1110.74607
[45] Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A.; Kotov, N. A., Ultrastrong and stiff layered polymer nanocomposites, Science, 318, 80-83 (2007)
[46] Podsiadlo, P.; Kaushik, A. K.; Shim, B. B.; Agarwal, A.; Tang, Z.; Waas, A. M.; Arruda, E. M.; Kotov, N. A., Can nature’s design be improved upon high strength nacre-like nanocomposites, Journal of Physical Chemistry C (2008)
[47] Rodin, G. J., Eshelby’s inclusion problem for polygons and polyhedral, Journal of the Mechanics and Physics of Solids, 44, 12, 1977-1995 (1996)
[48] Rodin, G. J., Discussion of “Elastic fields in a polygon-shaped inclusion with uniform eigenstrains,” by N. Nozaki and M. Taya, Journal of Applied Mechanics, 6, 5, 278 (1998)
[49] Sarvestani, A. S., On the overall elastic moduli of composites with spherical coated fillers, International Journal of Solids and Structures, 40, 26, 7553-7566 (2003) · Zbl 1063.74084
[50] Schjodt-Thomsen, J.; Pyrz, R., The Mori-Tanaka stiffness tensor: diagonal symmetry, complex fibre orientations and non-dilute volume fractions, Mechanics of Materials, 33, 531-544 (2001)
[51] Sharma, P.; Ganti, S., Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, Journal of Applied Mechanics, 71, 663-671 (2004) · Zbl 1111.74629
[52] Sheng, N.; Boyce, M. C.; Parks, D. M.; Rutledge, G. C.; Abes, J. I.; Cohen, R. E., Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle, Polymer, 45, 487-506 (2004)
[53] Shodja, H. M.; Sarvestani, A. S., Elastic fields in double inhomogeneity by the equivalent inclusion method, ASME Journal of Applied Mechanics, 68, 1, 3-10 (2001) · Zbl 1110.74676
[54] Smith, G. D., A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites, Journal of Chemistry and Physics, 117, 20, 9478-9489 (2002)
[55] Tan, H.; Huang, Y.; Liu, C.; Geubelle, P. H., The Mori-Tanaka method for composite materials with nonlinear interface debonding, International Journal of Plasticity, 21, 1890-1918 (2005) · Zbl 1154.74318
[56] Tandon, G. P.; Weng, G. J., The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites, Polymer Composites, 5, 4, 327-333 (1984)
[57] Tandon, G. P.; Weng, G. J., Average stress in the matrix and effective moduli of randomly orientated composites, Composite Science and Technology, 27, 111-132 (1986)
[58] Taya, M.; Chou, T.-W., On two kinds of ellipsoidal inhomogeneities in an infinite elastic body: an application to a hybrid composite, International Journal of Solids and Structures, 17, 553-563 (1981) · Zbl 0476.73052
[59] Taya, M.; Mura, T., International Journal of Applied Mechanics, 48, 361 (1981) · Zbl 0472.73115
[60] Vernerey, F. J.; Liu, W. K.; Moran, B.; Olson, G., A micromorphic model for the multiple scale failure of heterogeneous materials, Journal of the Mechanics and Physics of Solids, 56, 1320-1347 (2008) · Zbl 1171.74312
[61] Wu, Y.; Ling, Z.; Dong, Z., Stress-strain fields and the effectiveness shear properties for three-phase composites with imperfect interface, International Journal of Solids and Structures, 37, 1275-1292 (1999) · Zbl 0960.74056
[62] Yung, K. C.; Wang, J.; Yue, T. M., Modeling Young’s modulus of polymer-layered silicate nanocomposites using a modified Halpin-Tsai micromechanical model, Journal of Reinforced Plastics and Composites, 25, 847-860 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.