×

A condition for minimal interval exchange maps to be uniquely ergodic. (English) Zbl 0602.28009

A certain property (Property P) is considered which an interval exchange map may satisfy. (The definition of Property P is motivated by the observation that minimal interval exchange maps having Property P must be uniquely ergodic.) It is proved that “typical” interval exchange maps of rank 2 must satisfy Property P and hence cannot be minimal but not uniquely ergodic. The above results are applied for ascertaining the unique ergodicity of some finite group extensions of irrational rotations. Then “billiards” dynamical systems on the “rational” polygons are considered. It is observed that these billiards are closely related to certain finite group extensions of irrational rotations and deduced that the billiards on the “rational” polygons are uniquely ergodic in all irrational directions.
In the next parts a new proof of the “Keane conjecture” is given and the techniques developed in the previous paragraphs are employed to investigations of “rational billiards” dynamical systems.

MSC:

37A25 Ergodicity, mixing, rates of mixing
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
37E05 Dynamical systems involving maps of the interval
28D15 General groups of measure-preserving transformations
28D10 One-parameter continuous families of measure-preserving transformations
Full Text: DOI

References:

[1] P. Billingsley, Ergodic theory and information , John Wiley & Sons Inc., New York, 1965. · Zbl 0141.16702
[2] C. Boldrighini, M. Keane, and F. Marchetti, Billiards in polygons , Ann. Probab. 6 (1978), no. 4, 532-540. · Zbl 0377.28014 · doi:10.1214/aop/1176995475
[3] M. Boshernitzan, A unique ergodicity of minimal symbolic flow with linear block growth , to appear in J. D’Analyse Math. · Zbl 0602.28008 · doi:10.1007/BF02790191
[4] I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ, Ergodic theory , Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245, Springer-Verlag, New York, 1982. · Zbl 0493.28007
[5] H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory , Princeton University Press, Princeton, N.J., 1981. · Zbl 0459.28023
[6] A. B. Katok, Invariant measures of flows on orientable surfaces , Dokl. Akad. Nauk SSSR 211 (1973), 775-778, Sov. Math. Dokl. 14 (1973), 1104-1108. · Zbl 0298.28013
[7] M. Keane, Interval exchange transformations , Math. Z. 141 (1975), 25-31. · Zbl 0278.28010 · doi:10.1007/BF01236981
[8] M. Keane, Non-ergodic interval exchange transformations , Israel J. Math. 26 (1977), no. 2, 188-196. · Zbl 0351.28012 · doi:10.1007/BF03007668
[9] H. Keynes and D. Newton, A “minimal”, non-uniquely ergodic interval exchange transformation , Math. Z. 148 (1976), no. 2, 101-105. · Zbl 0308.28014 · doi:10.1007/BF01214699
[10] L. Kuipers and H. Niederreiter, Uniform distribution of sequences , Wiley-Interscience [John Wiley & Sons], New York, 1974. · Zbl 0281.10001
[11] H. Masur, Interval exchange transformations and measured foliations , Ann. of Math. (2) 115 (1982), no. 1, 169-200. JSTOR: · Zbl 0497.28012 · doi:10.2307/1971341
[12] W. A. Veech, Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem \(\mathrm mod\;2\) , Trans. Amer. Math. Soc. 140 (1969), 1-33. · Zbl 0201.05601 · doi:10.2307/1995120
[13] W. A. Veech, Finite group extensions of irrational rotations , Israel J. Math. 21 (1975), no. 2-3, 240-259. · Zbl 0334.28014 · doi:10.1007/BF02760801
[14] W. A. Veech, Interval exchange transformations , J. Analyse Math. 33 (1978), 222-272. · Zbl 0455.28006 · doi:10.1007/BF02790174
[15] W. A. Veech, Gauss measures for transformations on the space of interval exchange maps , Ann. of Math. (2) 115 (1982), no. 1, 201-242. JSTOR: · Zbl 0486.28014 · doi:10.2307/1971391
[16] A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons , Mat. Zametki 18 (1975), no. 2, 291-300. · Zbl 0315.58014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.