×

Optimal error estimates for Chebyshev approximations of functions with limited regularity in fractional Sobolev-type spaces. (English) Zbl 1428.41020

In this paper, there are introduced a new framework of fractional Sobolev-type spaces. The authors focused on the Chebyshev approximation but the analysis techniques are extendable to general Jacobi approximations. They put emphasis on estimating the decay rate of expansion coefficients for the reason that the errors of spectral expansions in various norms, and the related interpolation and quadratures, can be estimated directly from the sums of the coefficients.

MSC:

41A25 Rate of convergence, degree of approximation
41A10 Approximation by polynomials
41A50 Best approximation, Chebyshev systems
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

DLMF

References:

[1] Adams, Robert A., Sobolev Spaces, xviii+268 pp. (1975), Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0314.46030
[2] Alzer, Horst, On some inequalities for the gamma and psi functions, Math. Comp., 66, 217, 373-389 (1997) · Zbl 0854.33001 · doi:10.1090/S0025-5718-97-00807-7
[3] Alzer, Horst; Koumandos, Stamatis, Sharp inequalities for trigonometric sums, Math. Proc. Cambridge Philos. Soc., 134, 1, 139-152 (2003) · Zbl 1034.26007 · doi:10.1017/S0305004102006357
[4] Andrews, George E.; Askey, Richard; Roy, Ranjan, Special Functions, Encyclopedia of Mathematics and its Applications 71, xvi+664 pp. (1999), Cambridge University Press, Cambridge · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[5] Babu\v{s}ka, Ivo; Guo, Benqi, Optimal estimates for lower and upper bounds of approximation errors in the \(p\)-version of the finite element method in two dimensions, Numer. Math., 85, 2, 219-255 (2000) · Zbl 0970.65117 · doi:10.1007/PL00005387
[6] Babu\v{s}ka, Ivo; Guo, Benqi, Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces, SIAM J. Numer. Anal., 39, 5, 1512-1538 (2001/02) · Zbl 1008.65078 · doi:10.1137/S0036142901356551
[7] Babu\v{s}ka, Ivo; Guo, Benqi, Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. II. Optimal rate of convergence of the \(p\)-version finite element solutions, Math. Models Methods Appl. Sci., 12, 5, 689-719 (2002) · Zbl 1026.65103 · doi:10.1142/S0218202502001854
[8] Bergounioux, Ma\"{\i}tine; Leaci, Antonio; Nardi, Giacomo; Tomarelli, Franco, Fractional Sobolev spaces and functions of bounded variation of one variable, Fract. Calc. Appl. Anal., 20, 4, 936-962 (2017) · Zbl 1371.26013 · doi:10.1515/fca-2017-0049
[9] MR1470226 C. Bernardi and Y. Maday. Spectral Methods. In P. G. Ciarlet and J. L. Lions, editors, Handbook of Numerical Analysis, Vol. V, Part 2, pages 209-485. North-Holland, Amsterdam, 1997.
[10] Bourdin, Lo\"{\i}c; Idczak, Dariusz, A fractional fundamental lemma and a fractional integration by parts formula-Applications to critical points of Bolza functionals and to linear boundary value problems, Adv. Differential Equations, 20, 3-4, 213-232 (2015) · Zbl 1309.26007
[11] Boyd, John P., The asymptotic Chebyshev coefficients for functions with logarithmic endpoint singularities: mappings and singular basis functions, Appl. Math. Comput., 29, 1, 49-67 (1989) · Zbl 0668.65017 · doi:10.1016/0096-3003(89)90039-8
[12] Boyd, John P., Chebyshev and Fourier Spectral Methods, xvi+668 pp. (2001), Dover Publications, Inc., Mineola, NY · Zbl 0994.65128
[13] Brezis, Haim, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, xiv+599 pp. (2011), Springer, New York · Zbl 1220.46002
[14] Bustoz, Joaquin; Ismail, Mourad E. H., On gamma function inequalities, Math. Comp., 47, 176, 659-667 (1986) · Zbl 0607.33002 · doi:10.2307/2008180
[15] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods, Scientific Computation, xxii+563 pp. (2006), Springer-Verlag, Berlin · Zbl 1093.76002
[16] Castillo, Paul; Cockburn, Bernardo; Sch\"{o}tzau, Dominik; Schwab, Christoph, Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp., 71, 238, 455-478 (2002) · Zbl 0997.65111 · doi:10.1090/S0025-5718-01-01317-5
[17] Chen, Sheng; Shen, Jie; Wang, Li-Lian, Generalized Jacobi functions and their applications to fractional differential equations, Math. Comp., 85, 300, 1603-1638 (2016) · Zbl 1335.65066 · doi:10.1090/mcom3035
[18] Funaro, Daniele, Polynomial Approximation of Differential Equations, Lecture Notes in Physics. New Series m: Monographs 8, x+305 pp. (1992), Springer-Verlag, Berlin · Zbl 0774.41010
[19] Gui, W.; Babu\v{s}ka, I., The \(h,\;p\) and \(h-p\) versions of the finite element method in \(1\) dimension. I. The error analysis of the \(p\)-version, Numer. Math., 49, 6, 577-612 (1986) · Zbl 0614.65088 · doi:10.1007/BF01389733
[20] Guo, Ben-Yu; Shen, Jie; Wang, Li-Lian, Optimal spectral-Galerkin methods using generalized Jacobi polynomials, J. Sci. Comput., 27, 1-3, 305-322 (2006) · Zbl 1102.76047 · doi:10.1007/s10915-005-9055-7
[21] Guo, Ben-Yu; Shen, Jie; Wang, Li-Lian, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math., 59, 5, 1011-1028 (2009) · Zbl 1171.33006 · doi:10.1016/j.apnum.2008.04.003
[22] Guo, Ben-yu; Wang, Li-lian, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128, 1, 1-41 (2004) · Zbl 1057.41003 · doi:10.1016/j.jat.2004.03.008
[23] Hesthaven, Jan S.; Gottlieb, Sigal; Gottlieb, David, Spectral Methods for Time-Dependent Problems, Cambridge Monographs on Applied and Computational Mathematics 21, x+273 pp. (2007), Cambridge University Press, Cambridge · Zbl 1111.65093 · doi:10.1017/CBO9780511618352
[24] Lang, Serge, Real and Functional Analysis, Graduate Texts in Mathematics 142, xiv+580 pp. (1993), Springer-Verlag, New York · Zbl 0831.46001 · doi:10.1007/978-1-4612-0897-6
[25] Klebaner, Fima C., Introduction to Stochastic Calculus with Applications, xiv+416 pp. (2005), Imperial College Press, London · Zbl 1274.60005 · doi:10.1142/p386
[26] Leoni, Giovanni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics 105, xvi+607 pp. (2009), American Mathematical Society, Providence, RI · Zbl 1180.46001 · doi:10.1090/gsm/105
[27] Majidian, Hassan, On the decay rate of Chebyshev coefficients, Appl. Numer. Math., 113, 44-53 (2017) · Zbl 1355.65040 · doi:10.1016/j.apnum.2016.11.004
[28] Nevai, Paul; Erd\'{e}lyi, Tam\'{a}s; Magnus, Alphonse P., Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials, SIAM J. Math. Anal., 25, 2, 602-614 (1994) · Zbl 0805.33013 · doi:10.1137/S0036141092236863
[29] Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136, 5, 521-573 (2012) · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[30] Olver, F. W. J., Asymptotics and Special Functions, xvi+572 pp. (1974), Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0303.41035
[31] Olver, F. W. J., Airy and Related Functions. NIST handbook of mathematical functions, 193-213 (2010), U.S. Dept. Commerce, Washington, DC
[32] Ponnusamy, S., Foundations of Mathematical Analysis, xvi+570 pp. (2012), Birkh\"{a}user/Springer, New York · Zbl 1236.26002 · doi:10.1007/978-0-8176-8292-7
[33] Riess, R. D.; Johnson, L. W., Estimating Gauss-Chebyshev quadrature errors, SIAM J. Numer. Anal., 6, 557-559 (1969) · Zbl 0187.40103 · doi:10.1137/0706050
[34] Samko, Stefan G.; Kilbas, Anatoly A.; Marichev, Oleg I., Fractional Integrals and Derivatives, xxxvi+976 pp. (1993), Gordon and Breach Science Publishers, Yverdon · Zbl 0818.26003
[35] Schwab1998Book C. Schwab. \(p\)- and \(hp\)-FEM. Theory and Application to Solid and Fluid Mechanics. Oxford University Press, New York, 1998. · Zbl 0910.73003
[36] Shen, Jie; Tang, Tao; Wang, Li-Lian, Spectral Methods, Springer Series in Computational Mathematics 41, xvi+470 pp. (2011), Springer, Heidelberg · Zbl 1227.65117 · doi:10.1007/978-3-540-71041-7
[37] Szeg\H{o}, G\'{a}bor, Orthogonal Polynomials, xiii+432 pp. (1975), American Mathematical Society, Providence, R.I. · Zbl 0305.42011
[38] Trefethen, Lloyd N., Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., 50, 1, 67-87 (2008) · Zbl 1141.65018 · doi:10.1137/060659831
[39] Trefethen, Lloyd N., Approximation Theory and Approximation Practice, viii+305 pp.+back matter pp. (2013), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 1264.41001
[40] Tuan, P. D.; Elliott, David, Coefficients in series expansions for certain classes of functions, Math. Comp., 26, 213-232 (1972) · Zbl 0256.42012 · doi:10.2307/2004731
[41] Wang, Haiyong, On the convergence rate of Clenshaw-Curtis quadrature for integrals with algebraic endpoint singularities, J. Comput. Appl. Math., 333, 87-98 (2018) · Zbl 1380.65058 · doi:10.1016/j.cam.2017.10.034
[42] Xiang, Shuhuang; Chen, Xiaojun; Wang, Haiyong, Error bounds for approximation in Chebyshev points, Numer. Math., 116, 3, 463-491 (2010) · Zbl 1201.65040 · doi:10.1007/s00211-010-0309-4
[43] Zayernouri, Mohsen; Karniadakis, George Em, Fractional Sturm-Liouville eigen-problems: theory and numerical approximation, J. Comput. Phys., 252, 495-517 (2013) · Zbl 1349.34095 · doi:10.1016/j.jcp.2013.06.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.