×

Convergence properties of a class of product formulas for weakly singular integral equations. (English) Zbl 0705.65017

The authors study product quadrature rules \(\int^{1}_{- 1}K(x,y)f(x)dx\simeq \sum^{m}_{i=1}w_{m,i}(y)f(x_{m,i}),\) with \(K(x,y)=| x-y|^{\nu}\), \(\nu >-1\), or \(K(x,y)=\log | x- y|\), of interpolatory type, based on the zeros of some classes of generalized Jacobi orthogonal polynomials. If \(f(x)=(1\pm x)^{\sigma}\), \(\sigma >-1\), then they obtain uniform rate of convergence of the quadrature rules. Their results generalize some of those presented earlier in the literature.
Reviewer: D.Acu

MSC:

65D32 Numerical quadrature and cubature formulas
65R20 Numerical methods for integral equations
41A55 Approximate quadratures
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type)
Full Text: DOI

References:

[1] N. I. Achieser, Theory of approximation, Translated by Charles J. Hyman, Frederick Ungar Publishing Co., New York, 1956. · Zbl 0072.28403
[2] Kendall E. Atkinson, A survey of numerical methods for the solution of Fredholm integral equations of the second kind, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. · Zbl 0353.65069
[3] Helmut Brass, A remark on best \?\textonesuperior -approximation by polynomials, J. Approx. Theory 52 (1988), no. 3, 359 – 361. · Zbl 0696.41004 · doi:10.1016/0021-9045(88)90049-4
[4] M. M. Chawla and M. K. Jain, Asymptotic error estimates for the Gauss quadrature formula, Math. Comp. 22 (1968), 91 – 97. · Zbl 0155.21701
[5] Giuliana Criscuolo and Giuseppe Mastroianni, Mean and uniform convergence of quadrature rules for evaluating the finite Hilbert transform, Progress in approximation theory, Academic Press, Boston, MA, 1991, pp. 141 – 175.
[6] H. Gonska and E. Hinnemann, Punktweise Abschätzungen zur Approximation durch algebraische Polynome, Acta Math. Hungar. 46 (1985), no. 3-4, 243 – 254 (German). · Zbl 0599.41031 · doi:10.1007/BF01955736
[7] Ivan G. Graham, Singularity expansions for the solutions of second kind Fredholm integral equations with weakly singular convolution kernels, J. Integral Equations 4 (1982), no. 1, 1 – 30. · Zbl 0482.45003
[8] Martin Kütz, Asymptotic error bounds for a class of interpolatory quadratures, SIAM J. Numer. Anal. 21 (1984), no. 1, 167 – 175. · Zbl 0563.41025 · doi:10.1137/0721011
[9] D. S. Lubinsky and P. Rabinowitz, Rates of convergence of Gaussian quadrature for singular integrands, Math. Comp. 43 (1984), no. 167, 219 – 242. · Zbl 0574.41028
[10] G. Monegato and V. Colombo, Product integration for the linear transport equation in slab geometry, Numer. Math. 52 (1988), no. 2, 219 – 240. · Zbl 0618.65143 · doi:10.1007/BF01398690
[11] Giovanni Monegato, Orthogonal polynomials and product integration for one-dimensional Fredholm integral equations with ”nasty” kernels, Proceedings of the 9th Conference on Problems and Methods in Mathematical Physics (9.TMP) (Karl-Marx-Stadt, 1988) Teubner-Texte Math., vol. 111, Teubner, Leipzig, 1989, pp. 185 – 192. · Zbl 0698.65085
[12] Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. · Zbl 0405.33009 · doi:10.1090/memo/0213
[13] G. P. Nevai, Mean convergence of Lagrange interpolation. I, J. Approximation Theory 18 (1976), no. 4, 363 – 377. · Zbl 0426.41001
[14] Paul Nevai, Mean convergence of Lagrange interpolation. III, Trans. Amer. Math. Soc. 282 (1984), no. 2, 669 – 698. · Zbl 0577.41001
[15] G. R. Richter, On weakly singular Fredholm integral equations with displacement kernels, J. Math. Anal. Appl. 55 (1976), no. 1, 32 – 42. · Zbl 0355.45005 · doi:10.1016/0022-247X(76)90275-4
[16] Paul Otto Runck, Bemerkungen zu den Approximationssätzen von Jackson und Jackson-Timan, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968) Birkhäuser, Basel, 1969, pp. 303 – 308 (German). · Zbl 0198.08802
[17] Claus Schneider, Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equations Operator Theory 2 (1979), no. 1, 62 – 68. · Zbl 0403.45002 · doi:10.1007/BF01729361
[18] Claus Schneider, Product integration for weakly singular integral equations, Math. Comp. 36 (1981), no. 153, 207 – 213. · Zbl 0474.65095
[19] Ian H. Sloan and William E. Smith, Properties of interpolatory product integration rules, SIAM J. Numer. Anal. 19 (1982), no. 2, 427 – 442. · Zbl 0491.41002 · doi:10.1137/0719027
[20] William E. Smith and Ian H. Sloan, Product-integration rules based on the zeros of Jacobi polynomials, SIAM J. Numer. Anal. 17 (1980), no. 1, 1 – 13. · Zbl 0429.41023 · doi:10.1137/0717001
[21] G. Vainikko and A. Pedas, The properties of solutions of weakly singular integral equations, J. Austral. Math. Soc. Ser. B 22 (1980/81), no. 4, 419 – 430. · Zbl 0475.65085 · doi:10.1017/S0334270000002769
[22] G. Vainikko and P. Uba, A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel, J. Austral. Math. Soc. Ser. B 22 (1980/81), no. 4, 431 – 438. · Zbl 0475.65084 · doi:10.1017/S0334270000002770
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.