×

The average number of critical rank-one approximations to a tensor. (English) Zbl 1358.15015

Let \(V:=\mathbb{R}^{n_1}\otimes\mathbb{R}^{n_2}\otimes \dots \otimes\mathbb{R}^{n_p}\) and let \(X\) be the set of rank-\(1\) tensors in \(V\). Define \(d_{v}(x)\) to be the squared Euclidean distance from \(v\in V\) to \(x\in X\). The authors are interested in analyzing the pairs \((v,x)\) such that \(d_{v}(x)\) is a critical point of \(d_{v}\); these are called the critical rank-\(1\) approximations to \(v\). In the case \(p=2\), we can identify \(V\;\)with the set of all \(n_1\times n_2\) matrices \(v\) and the critical rank-\(1\) approximations are \(x=\sigma x_{1}x_{2}^{T}\) where \(\sigma\) is a singular value of \(v\) and \(x_{1}\),\(x_{2}\) are corresponding left and right eigenvectors. In particular, \(d_{v}(x)\) is minimized when \(\sigma\) is the largest singular value of \(v\). For \(p>2\), the situation is more complicated and no simple description of the (real) critical rank-\(1\) approximations is known.
In the present paper, the authors prove a formula for the expected number \(E_{V}\) of critical points of \(d_{v}\) on \(X\) as \(v\) runs over a multivariate Gaussian distribution with values in \(V\). The formula for \(E_{V}\) involves a multidimensional integral and is too complicated to give here, but it enables the authors to use Monte Carlo methods to estimate \(E_{V}\) for some smaller dimensional examples.

MSC:

15A69 Multilinear algebra, tensor calculus
60B20 Random matrices (probabilistic aspects)
58K05 Critical points of functions and mappings on manifolds
65C05 Monte Carlo methods
15A03 Vector spaces, linear dependence, rank, lineability
15A18 Eigenvalues, singular values, and eigenvectors
15B52 Random matrices (algebraic aspects)

References:

[1] DOI: 10.1016/0196-6774(90)90014-6 · Zbl 0716.65043 · doi:10.1016/0196-6774(90)90014-6
[2] DOI: 10.1145/2512329 · Zbl 1281.68126 · doi:10.1145/2512329
[3] DOI: 10.1016/j.laa.2010.06.046 · Zbl 1206.65141 · doi:10.1016/j.laa.2010.06.046
[4] DOI: 10.1016/j.jsc.2012.11.005 · Zbl 1277.15019 · doi:10.1016/j.jsc.2012.11.005
[5] DOI: 10.1137/06066518X · Zbl 1167.14038 · doi:10.1137/06066518X
[6] DOI: 10.1007/s10208-014-9194-z · Zbl 1326.15036 · doi:10.1007/s10208-014-9194-z
[7] DOI: 10.1137/060661569 · Zbl 1181.15014 · doi:10.1137/060661569
[8] DOI: 10.1137/060661685 · Zbl 1177.15031 · doi:10.1137/060661685
[9] DOI: 10.1137/070690729 · Zbl 1177.15032 · doi:10.1137/070690729
[10] DOI: 10.1137/070690730 · Zbl 1177.15033 · doi:10.1137/070690730
[11] DOI: 10.1137/090764827 · Zbl 1218.65041 · doi:10.1137/090764827
[12] DOI: 10.1137/S0895479898346995 · Zbl 0958.15026 · doi:10.1137/S0895479898346995
[13] DOI: 10.1016/j.laa.2011.05.040 · Zbl 1277.15007 · doi:10.1016/j.laa.2011.05.040
[14] Rouault A, Am. J Probab. Math. Stat 3 pp 181– (2007)
[15] DOI: 10.1002/9780470316559 · doi:10.1002/9780470316559
[16] DOI: 10.1016/j.aim.2012.05.006 · Zbl 1248.60011 · doi:10.1016/j.aim.2012.05.006
[17] DOI: 10.1007/978-0-8176-4771-1 · doi:10.1007/978-0-8176-4771-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.