×

Quasi-classical approach to the inverse scattering problem for the KdV equation, and solution of the Whitham modulation equations. (English. Russian original) Zbl 0888.35098

Theor. Math. Phys. 106, No. 1, 35-49 (1996); translation from Teor. Mat. Fiz. 106, No. 1, 44-61 (1996).
Summary: We consider an initial value problem for the KdV equation in the limit of weak dispersion. This model describes the formation and evolution in time of a nondissipative shock wave in plasma. Using the perturbation theory in power series of a small dispersion parameter, we arrive at the Riemann simple wave equation. Once the simple wave is overturned, we arrive at the system of Whitham modulation equations that describes the evolution of the resulting nondissipative shock wave. The idea of the approach developed in this paper is to study the asymptotic behavior of the exact solution in the limit of weak dispersion, using the solution given by the inverse scattering problem technique. In the study of the problem, we use the WKB approach to the direct scattering problem and use the formulas for the exact multisoliton solution of the inverse scattering problem. By passing to the limit, we obtain a finite set of relations that connects the space-time parameters \(x\), \(t\) and the modulation parameters of the nondissipative shock wave.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A22 Transform methods (e.g., integral transforms) applied to PDEs
35R30 Inverse problems for PDEs
35P25 Scattering theory for PDEs
Full Text: DOI

References:

[1] G. B. Whitham,Proc. Roy. Soc. London A,283, 238 (1965). · Zbl 0125.44202 · doi:10.1098/rspa.1965.0019
[2] A. V. Gurevich and L. P. Pitaevskii,Zh. Eksp. Teor. Fiz.,65, 590 (1973).
[3] V. L. Gurevich, A. L. Krylov, and N. G. Mazur,Zh. Eksp. Teor. Fiz.,95, 1674 (1989).
[4] V. L. Gurevich, A. L. Krylov, N. G. Mazur, and G. A. El’,Dokl. Akad. Nauk SSSR,323, 876 (1992).
[5] S. P. Tsarev,Dokl. Akad. Nauk SSSR,282, 534 (1985).
[6] B. A. Dubrovin and S. P. Novikov,Usp. Mat. Nauk,44, 29 (1989).
[7] V. L. Gurevich, A. L. Krylov, and G. A. El’,Pis’ma Zh. Eksp. Teor. Fiz.,54, 104 (1991).
[8] V. R. Kudashev and S. E. Sharapov,Teor. Mat. Fiz.,87, 40 (1991).
[9] V. L. Gurevich, A. L. Krylov, and G. A. El’,Zh. Eksp. Teor. Fiz.,101, 1797 (1992).
[10] A. L. Krylov, V. V. Khodorovskii, and G. A. El’,Pis’ma Zh. Eksp. Teor. Fiz.,56, 325 (1992).
[11] F. R. Tian,Commun. Pure Appl. Math.,46, 1093 (1993). · Zbl 0810.35114 · doi:10.1002/cpa.3160460802
[12] P. D. Lax and C. D. Levermore,Commun. Pure Appl. Math.,36, 253–290 (1983); 571–593; 809–830. · Zbl 0532.35067 · doi:10.1002/cpa.3160360302
[13] S. Venakides,Commun. Pure Appl. Math.,38, 125 (1985). · Zbl 0571.35095 · doi:10.1002/cpa.3160380202
[14] S. Venakides,Commun. Pure Appl. Math.,43, 335 (1990). · Zbl 0705.35125 · doi:10.1002/cpa.3160430303
[15] R. F. Bikbaev,Funkts. Anal. Prilozh.,23, 1 (1989). · Zbl 0709.49014 · doi:10.1007/BF01078568
[16] R. F. Bikbaev,Phys. Lett. A,141, 289 (1989). · Zbl 0741.35078 · doi:10.1016/0375-9601(89)90487-8
[17] V. V. Geogdzhaev,Dokl. Akad. Nauk SSSR,284, 1093 (1985).
[18] R. Bullough and F. Caudrey (eds.),Solitons [Russian translation], Mir, Moscow (1983).
[19] M. A. Lavrent’ev and B. V. Shabat,The Theory of Functions of Complex Variable [in Russian], Fizmatgiz, Moscow (1958).
[20] E. Jahnke, F. Emde, and F. Lösh,Special Functions [Russian translation], Nauka, Moscow (1968).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.