×

Bethe vectors for orthogonal integrable models. (English. Russian original) Zbl 1441.81106

Theor. Math. Phys. 201, No. 2, 1545-1564 (2019); translation from Teor. Mat. Fiz. 201, No. 2, 153-174 (2019).
Summary: We consider quantum integrable models associated with the \(\mathfrak{so}_3\) algebra and describe Bethe vectors of these models in terms of the current generators of the \(\mathcal{D}Y(\mathfrak{so}_3)\) algebra. To implement this program, we use an isomorphism between the \(R\)-matrix and the Drinfeld current realizations of the Yangians and their doubles for classical type \(B\)-, \(C\)-, and \(D\)-series algebras. Using these results, we derive the actions of the monodromy matrix elements on off-shell Bethe vectors. We obtain recurrence relations for off-shell Bethe vectors and Bethe equations for on-shell Bethe vectors. The formulas for the action of the monodromy matrix elements can also be used to calculate scalar products in the models associated with the \(\mathfrak{so}_3\) algebra.

MSC:

81Q80 Special quantum systems, such as solvable systems
81Q40 Bethe-Salpeter and other integral equations arising in quantum theory
16T25 Yang-Baxter equations
82B23 Exactly solvable models; Bethe ansatz
82C23 Exactly solvable dynamic models in time-dependent statistical mechanics
17B20 Simple, semisimple, reductive (super)algebras
17B45 Lie algebras of linear algebraic groups
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)

References:

[1] Sklyanin, E. K.; Takhtadzhyan, L. A.; Faddeev, L. D., Quantum inverse problem method: I, Theor. Math. Phys., 40, 688-706 (1979) · Zbl 1138.37331 · doi:10.1007/BF01018718
[2] Takhtadzhyan, L. A.; Faddeev, L. D., The quantum method of the inverse problem and the Heisenberg XYZ model, Russian Math. Surveys, 34, 11-68 (1979) · Zbl 0449.35096 · doi:10.1070/RM1979v034n05ABEH003909
[3] Reshetikhin, N. Y., A method of functional equations in the theory of exactly solvable quantum systems, Lett. Math. Phys., 7, 205-213 (1983) · doi:10.1007/BF00400435
[4] Reshetikhin, N. Y., O(N) invariant quantum field theoretical models: Exact solution, Nucl. Phys. B, 251, 565-580 (1985) · Zbl 1223.81132 · doi:10.1016/0550-3213(85)90278-0
[5] Kulish, P. P.; Reshetikhin, N. Y., Soviet Phys. JETP, 53, 108-114 (1981)
[6] Kulish, P. P.; Reshetikhin, N. Y., J. Soviet Math., 34, 1948-1971 (1989) · doi:10.1007/BF01095104
[7] Kulish, P. P.; Reshetikhin, N. Y., Diagonalization of GL(N) invariant transfer matrices and quantum N-wave system (Lee model), J. Phys. A: Math. Gen., 16, L591-L596 (1983) · Zbl 0545.35082 · doi:10.1088/0305-4470/16/16/001
[8] Varchenko, A. N.; Tarasov, V. O., Jackson integral representations for solutions of the Knizhnik-Zamolodchikov quantum equation, St. Petersburg Math. J., 6, 275-313 (1995)
[9] Tarasov, V.; Varchenko, A., Combinatorial formulae for nested Bethe vector, SIGMA, 9, 048 (2013) · Zbl 1288.82024
[10] Reshetikhin, N. Y.; Semenov-Tian-Shansky, M. A., Central extensions of quantum current groups, Lett. Math. Phys., 19, 133-142 (1990) · Zbl 0692.22011 · doi:10.1007/BF01045884
[11] Jing, N.; Liu, M.; Molev, A., Isomorphism between the R-matrix and Drinfeld presentations of Yangian in types B, C and D, Commun. Math. Phys., 361, 827-872 (2018) · Zbl 1472.17053 · doi:10.1007/s00220-018-3185-x
[12] N. Jing, M. Liu, and F. Yang, “Double Yangians of the classical types and their vertex representations,” arXiv:1810.06484v2 [math.QA] (2018).
[13] Hutsalyuk, A. A.; Liashyk, A.; Pakulyak, S. Z.; Ragoucy, E.; Slavnov, N. A., Current presentation for the super-Yangian double DY (gl(m|n)) and Bethe vectors, Russian Math. Surveys, 72, 33-99 (2017) · Zbl 1377.82026 · doi:10.1070/RM9754
[14] Zamolodchikov, A. B.; Zamolodchikov, A. B., Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Ann. Phys., 120, 253-291 (1979) · doi:10.1016/0003-4916(79)90391-9
[15] Pakuliak, S. Z.; Khoroshkin, S. M., Weight function for the quantum affine algebra \({U_q}\left({{{\widehat{\mathfrak{sl}}}_3}} \right)\), Theor. Math. Phys., 145, 1373-1399 (2005) · Zbl 1178.17016 · doi:10.1007/s11232-005-0167-x
[16] Khoroshkin, S.; Pakuliak, S., A computation of an universal weight function for the quantum affine algebra \({U_q}\left({{{\widehat{\mathfrak{gl}}}_N}} \right)\), J. Math. Kyoto Univ., 48, 277-321 (2008) · Zbl 1221.17016 · doi:10.1215/kjm/1250271413
[17] Belliard, S.; Pakuliak, S.; Ragoucy, E.; Slavnov, N. A., Highest coefficient of scalar products in SU(3)-invariant models, J. Stat. Mech., 9, P09003 (2012) · Zbl 1456.81225
[18] Hutsalyuk, A.; Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A., Scalar products of Bethe vectors in the models with gl(m|n)) symmetry, Nucl. Phys. B, 923, 277-311 (2017) · Zbl 1373.82031 · doi:10.1016/j.nuclphysb.2017.07.020
[19] Molev, A., Yangian and Classical Lie Algebras (2007), Providence, R. I.: Amer. Math. Soc., Providence, R. I. · Zbl 1141.17001
[20] Arnaudon, D.; Molev, A.; Ragoucy, E., On the R-matrix realization of Yangians and their representations, Ann. Henri Poincaré, 7, 1269-1325 (2006) · Zbl 1227.17008 · doi:10.1007/s00023-006-0281-9
[21] Drinfel’D, V. G., A new realization of Yangians and of quantum affine algebras, Soviet Dokl. Math., 36, 212-216 (1988) · Zbl 0667.16004
[22] Enriquez, B.; Khoroshkin, S.; Pakuliak, S., Weight functions and Drinfeld currents, Commun. Math. Phys., 276, 691-725 (2007) · Zbl 1140.17010 · doi:10.1007/s00220-007-0351-y
[23] Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A., New symmetries of gl(N)-invariant Bethe vectors, J. Stat. Mech., 2019, 044001 (2019) · doi:10.1088/1742-5468/ab02f0
[24] Drinfeld, V. G., Quantum groups, J. Soviet Math., 41, 898-915 (1988) · Zbl 0641.16006 · doi:10.1007/BF01247086
[25] Khoroshkin, S. M.; Tolstoy, V. N., Yangian double, Lett. Math. Phys., 36, 373-402 (1996) · Zbl 0860.17017 · doi:10.1007/BF00714404
[26] Mukhin, E.; Tarasov, V.; Varchenko, A., Bethe eigenvectors of higher transfer matrices, J. Stat. Mech., 2006, P08002 (2006) · Zbl 1456.82301 · doi:10.1088/1742-5468/2006/08/P08002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.