×

How is the period of a simple pendulum growing with increasing amplitude? (English) Zbl 1484.70008

Summary: For the period \(T(\alpha)\) of a simple pendulum with the length \(L\) and the amplitude (the initial elongation) \(\alpha\in (0,\pi)\), a strictly increasing sequence \(T_n(\alpha)\) is constructed such that the relations \begin{align*} & T_1(\alpha)=2\sqrt{\frac{L}{g}}\left[\pi-2+\frac{1}{\epsilon} \ln\left(\frac{1+\varepsilon}{1-\varepsilon}\right)+\left(\frac{\pi}{4}-\frac{2}{3}\right)\varepsilon^2\right],\\ & T_{n+1}(\alpha)=T_n(\alpha)+2\sqrt{\frac{L}{g}}\left(\pi w_{n+1}^2 - \frac{2}{2n+3}\right)\varepsilon^{2n+2}, \end{align*} and \[ 0<\frac{T(\alpha)-T_n(\alpha)}{T(\alpha)}<\frac{2\varepsilon^{2n+2}}{\pi(2n+1)}, \] holds true, for \(\alpha\in (0,\pi)\), \(n\in\mathbb{N}\), \(w_n:=\prod_{k=1}^n\frac{2k-1}{2k}\) (the \(n\)-th Wallis’ ratio) and \(\varepsilon=\sin(\alpha/2)\).

MSC:

70E17 Motion of a rigid body with a fixed point
70F20 Holonomic systems related to the dynamics of a system of particles
40A25 Approximation to limiting values (summation of series, etc.)
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
65B10 Numerical summation of series

Software:

Mathematica
Full Text: DOI

References:

[1] Abramowitz, M.—Stegun, I. A.: Handbook of Mathematical Functions, 9th edn., Dover Publications, New York, 1974.
[2] Adlaj, S.: An eloquent formula for the perimeter of an ellipse, Notices of the AMS 59 (2012), 1094-1099. · Zbl 1284.33014
[3] Almkvist, G.—Berndt, B.: Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary, Amer. Math. Monthly 95 (1988), 585-608. · Zbl 0665.26007
[4] Amrani, D.—Paradis, P.—Beaudin, M.: Approximation expressions for the large-angle period of a simple pendulum revisited, Rev. Mex. Fís. E 54 (2008), 59-64.
[5] Beléndez, A. et al.: Analytical approximations for the period of a nonlinear pendulum, Eur. J. Phys. 27 (2006), 539-551.
[6] Beléndez, A. et al.: Approximation for the large-angle simple pendulum period, Eur. J. Phys. 30 (2009), 25-28.
[7] Beléndez, A. et al.: Higher accurate approximate solutions for the simple pendulum in terms of elementary functions, Eur. J. Phys. 31 (2010), 65-70. · Zbl 1373.70018
[8] Beléndez, A. et al.: Approximate solutions for the nonlinear pendulum equation using a rational harmonic representation, Comput. Math. Appl. 64 (2012), 1602-1611. · Zbl 1268.70005
[9] Borghi, R.: Simple pendulum dynamics: revisiting the Fourier-basedapproach to the solution, arXiv:1303.5023v1[physics.class-ph].
[10] Carvalhaes, C. G.—Suppes, P.: Approximation for the period of the simple pendulum based on the arithmetic-geometric mean, Am. J. Phys. 76 (2008), 1150-1154.
[11] Chen, C.-P.—Qi, F.: Best upper and lower bounds in Wallis’ inequality, J. Indones. Math. Soc. 11 (2005), 137-141. · Zbl 1088.33001
[12] Chen, C.-P.—Qi, F.: The best bounds in Wallis’ inequality, Proc. Amer. Math. Soc. 133 (2005), 397-401. · Zbl 1049.05006
[13] Chen, C.-P.—Qi, F.: Completely monotonic function associated with the gamma functions and proof of Wallis’ inequality, Tamkang J. Math. 36 (2005), 303-307. · Zbl 1092.33002
[14] Cristea, V. G.: A direct approach for proving Wallis’ ratio estimates and an improvement of Zhang-Xu-Situ inequality, Stud. Univ. Babeş-Bolyai Math. 60 (2015), 201-209. · Zbl 1374.33003
[15] Dadfar, M. B.-Geer, J. F.: Power series solution to a simple pendulum with oscillating support, SIAM J. Appl. Math. 47 (1987), 737-750. · Zbl 0627.34036
[16] Deng, J.-E.—Ban, T.—Chen, C.-P.: Sharp inequalities and asymptotic expansion associated with the Wallis sequence, J. Inequal. Appl. (2015), 2015:186. · Zbl 1373.41023
[17] Dumitrescu, S.: Estimates for the ratio of gamma functions using higher order roots, Stud. Univ. Babeş-Bolyai Math. 60 (2015), 173-181. · Zbl 1374.33004
[18] Guo, S.—Xu, J.-G.—Qi, F.: Some exact constants for the approximation of the quantity in the Wallis’ formula, J. Inequal. Appl. (2013), 2013:67. · Zbl 1281.41010
[19] Guo, S. et al.: A sharp two-sided inequality for bounding the Wallis ratio, J. Inequal. Appl. (2015), 2015:43. · Zbl 1338.11023
[20] Guo, B.-N.—Qi, F.: On the Wallis formula, Internat. J. Anal. Appl. 8 (2015), 30-38. · Zbl 1386.33001
[21] Johannessen, K.: An anharmonic solution to the equation of motion for the simple pendulum, Eur. J. Phys. 32 (2011), 407-417. · Zbl 1241.70038
[22] Laforgia, A.—Natalini, P.: On the asymptotic expansion of a ratio of gamma functions, J. Math. Anal. Appl. 389 (2012), 833-837. · Zbl 1242.33004
[23] Lampret, V.: Wallis’ sequence estimated accurately using an alternating series, J. Number. Theory 172 (2017), 256-269. · Zbl 1351.40003
[24] Lampret, V.: A simple asymptotic estimate of Wallis’ ratio using Stirling’s factorial formula, Bull. Malays. Math. Sci. Soc. 42 (2019), 3213-3221. · Zbl 1447.11121
[25] Landau, L. D.—Lifshitz, E. M.: Course of Theoretical Physics: Mechanics, 3ed., Butterworth-Heinemann, 1986.
[26] Lima, F. M. S.—Arun, P.: An accurate formula for the period of a simple pendulum oscillating beyond the small angle regime, Am. J. Phys. 74 (2006), 892-895.
[27] Lima, F. M. S.: Simple ‘log formulae’ for pendulum motion valid for any amplitude, Eur. J. Phys. 29 (2008), 1091-1098. · Zbl 1202.70119
[28] Maclaurin, C. A.: A Treatise of Fluxions. In Two Books, Vol.2, T. W. and T. Ruddimans, Edinburgh, 1742.
[29] Mortici, C.: Sharp inequalities and complete monotonicity for the Wallis ratio, Bull. Belg. Math. Math. Soc. Simon Stevin 17 (2010), 929-936. · Zbl 1209.26026
[30] Mortici, C.: New approximation formulas for evaluating the ratio of gamma functions, Math. Comput. Modelling 52 (2010), 425-433. · Zbl 1201.33003
[31] Mortici, C.: A new method for establishing and proving new bounds for the Wallis ratio, Math. Inequal. Appl. 13 (2010), 803-815. · Zbl 1206.33006
[32] Mortici, C.: Completely monotone functions and the Wallis ratio, Appl. Math. Lett. 25 (2012), 717-722. · Zbl 1242.33005
[33] Mortici, C.—Cristea, V. G.: Estimates for Wallis’ ratio and related functions, Indian J. Pure Appl. Math. 47 (2016), 437-447. · Zbl 1367.33005
[34] Parwani, R. R.: An approximate expression for the large angle period of a simple pendulum, Eur. J. Phys. 25 (2004), 37-39. · Zbl 1162.70300
[35] Qi, F.—Mortici, C.: Some best approximation formulas and the inequalities for the Wallis ratio, Appl. Math. Comput. 253 (2015), 363-368. · Zbl 1338.33010
[36] Qi, F.: An improper integral, the beta function, the Wallis ratio, and the Catalan numbers, Prob. Anal. Issues Anal. 7 (2018), 104-115. · Zbl 1440.11023
[37] Siboni, S.: Superlinearly convergent homogeneous maps and period of the pendulum, Am. J. Phys. 75 (2007), 368-373.
[38] Sun, J.-S.—Qu, C.-M.: Alternative proof of the best bounds of Wallis’ inequality, Commun. Math. Anal. 2 (2007), 23-27. · Zbl 1160.05301
[39] Villarino, M. B.: The AGM simple pendulum, arXiv:1202.2782v2, (2014).
[40] Wolfram, S.: Mathematica, Version 7.0, Wolfram Research, Inc., 1988-2009.
[41] Zhang, X.-M.—Xu, T. Q.—Situ, L. B.: Geometric convexity of a function involving gamma function and application to inequality theory, J. Inequal. Pure Appl. Math. 8 (2007), Art. 17. · Zbl 1148.26014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.