×

A volume-of-fluid reconstruction based interface sharpening algorithm for a reduced equation model of two-material compressible flow. (English) Zbl 1521.76849

Summary: In this paper we present a numerical method for the simulation of two-material flows governed by the compressible unsteady Euler equations. A system of six equations is used, with a pressure relaxation step which ensures convergence to the equivalent five-equation model. The numerical method employs a volume-of-fluid interface tracking method in order to maintain a sharp interface indefinitely, along with a robust update procedure for interfacial cells which ensures density and internal energy positivity. Numerical results are presented for a range of test cases, including for liquid-gas shock-bubble interaction and cylindrically convergent Richtmyer-Meshkov instability between metal and air. Results are in agreement with theoretical data, and compare well to other approaches designed to sharpen the material interface in the five-equation model.

MSC:

76T06 Liquid-liquid two component flows
76M12 Finite volume methods applied to problems in fluid mechanics
76Nxx Compressible fluids and gas dynamics

Software:

HE-E1GODF
Full Text: DOI

References:

[1] Röpke, F. K.; Hillebrandt, M., Full-star type ia supernova explosion models, Astron Astrophys, 431, 635-645 (2005)
[2] Town, R. P.J.; Bell, A. R., Three-dimensional simulations of the implosion of inertial confinement fusion targets, Phys Rev Lett, 67, 1863-1866 (1991)
[3] Haller, K. K.; Ventikos, Y.; Poulikakos, D.; Monkewitz, P., Computational study of high-speed liquid droplet impact, J Appl Phys, 92, 2821-2828 (2002)
[4] Moss, W. C.; Clarke, D. B.; White, J. W.; Young, D. A., Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence, Phys Fluids, 6, 2979-2985 (1994)
[5] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, Int J Multiph Flow, 12, 861-889 (1986) · Zbl 0609.76114
[6] Massoni, J.; Saurel, R.; Nkonga, B.; Abgrall, R., Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: Some models and Eulerian methods for interface problems between compressible fluids with heat transfer, Int J Heat Mass Transfer, 45, 6, 1287-1307 (2002) · Zbl 1121.76378
[7] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations, Phys Fluids, 13, 3002-3024 (2001) · Zbl 1184.76268
[8] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J Comput Phys, 181, 577-616 (2002) · Zbl 1169.76407
[9] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J Comput Phys, 202, 664-698 (2005) · Zbl 1061.76083
[10] Billaud Friess, M.; Kokh, S., Simulation of sharp interface multi-material flows involving an arbitrary number of components through an extended five-equation model, J Comput Phys, 273, 488-519 (2014) · Zbl 1351.76097
[11] Tian, B.; Toro, E. F.; Castro, C. E., A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver, Comput & Fluids, 46, 122-132 (2011) · Zbl 1433.76166
[12] Michael, L.; Nikiforakis, N., A hybrid formulation for the numerical simulation of condensed phase explosives, J Comput Phys, 316, 193-217 (2016) · Zbl 1349.76363
[13] Barton, P. T., An interface-capturing godunov method for the simulation of compressible solid-fluid problems, J Comput Phys, 390, 25-50 (2019) · Zbl 1452.74033
[14] Shukla, R. K.; Pantano, C.; Freund, J. B., An interface capturing method for the simulation of multi-phase compressible flows, J Comput Phys, 229, 7411-7439 (2010) · Zbl 1425.76289
[15] So, K. K.; Hu, X. Y.; Adams, N. A., Anti-diffusion interface sharpening technique for two-phase compressible flow simulations, J Comput Phys, 231, 4304-4323 (2012) · Zbl 1426.76428
[16] Kokh, S.; Lagoutière, F., An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model, J Comput Phys, 229, 2773-2809 (2010) · Zbl 1302.76129
[17] Xiao, F.; Honma, Y.; Kono, T., A simple algebraic interface capturing scheme using hyperbolic tangent function, Internat J Numer Methods Fluids, 48, 9, 1023-1040 (2005) · Zbl 1072.76046
[18] Miller, G. H.; Puckett, E. G., A high-order godunov method for multiple condensed phases, J Comput Phys, 128, 134-164 (1996) · Zbl 0861.65117
[19] Shyue, K. M., A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions, J Comput Phys, 215, 219-244 (2006) · Zbl 1140.76401
[20] Leer, B. Van, Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J Comput Phys, 23, 276-299 (1977) · Zbl 0339.76056
[21] Toro, E., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (1999), Berlin Heidelberg: Berlin Heidelberg Springer-Verlag · Zbl 0923.76004
[22] Toro, E. F., A weighted average flux method for hyperbolic conservation laws, Proc R Soc Lond Ser A Math Phys Eng Sci, 423, 401-418 (1989) · Zbl 0674.76060
[23] Garrick, D. P.; Owkes, M.; Regele, J. D., A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension, Journal of Computational Physics, 339, 46-67 (2016) · Zbl 1375.76099
[24] Johnsen, E.; Colonius, T., Implementation of WENO schemes in compressible multicomponent flow problems, J Comput Phys, 219, 715-732 (2006) · Zbl 1189.76351
[25] Pilliod Jr, J. E.; Puckett, E. G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J Comput Phys, 199, 465-502 (2004) · Zbl 1126.76347
[26] Parker, B.; Youngs, D., Two and Three Dimensional Eulerian Simulation of Fluid Flow with Material Interfaces (1992), Atomic Weapons Establishment
[27] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J Comput Phys, 152, 457-492 (1999) · Zbl 0957.76052
[28] Saurel, R.; Petitpas, F.; Berry, R. A., Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J Comput Phys, 228, 1678-1712 (2009) · Zbl 1409.76105
[29] Haas, J. F.; Sturtevant, B., Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities, J Fluid Mech, 181, 41-76 (1987)
[30] Shyue, Keh-Ming; Xiao, Feng, An Eulerian interface sharpening algorithm for compressible two-phase flow: The algebraic THINC approach, J Comput Phys, 268, 326-354 (2014) · Zbl 1349.76388
[31] Quirk, James J.; Karni, S., On the dynamics of a shock-bubble interaction, J Fluid Mech, 318, 1996, 129-163 (1996) · Zbl 0877.76046
[32] Richtmyer, R. D., Taylor instabilities in shock acceleration of compressible fluids, Comm Pure Appl Math, XIII, 297-319 (1960)
[33] Bo, W.; Grove, J. W., A volume of fluid method based ghost fluid method for compressible multi-fluid flows, Comput & Fluids, 90, 113-122 (2014) · Zbl 1391.76524
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.