×

Improved nine-node shell element MITC9i with reduced distortion sensitivity. (English) Zbl 1460.74084

Summary: The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell kinematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved transformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of M. A. Celia and W. G. Gray [Int. J. Numer. Methods Eng. 20, 1443–1459 (1984; Zbl 0537.73061)] are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter \( \gamma \) of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells

Citations:

Zbl 0537.73061

Software:

AceFEM; ompFEAP

References:

[1] ABAQUS. Ver.6.10-2
[2] ADINA. Ver.8.6.2
[3] Bathe, K-J; Dvorkin, EN, A four-node plate bending element based on Mindlin-Reissner plate theory and mixed interpolation, Int J Numer Meth Eng, 21, 367-383, (1985) · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[4] Belytschko, T; Wong, BL; Stolarski, H, Assumed strain stabilization procedure for the 9-node Lagrange shell element, Int J Numer Meth Eng, 28, 385-414, (1989) · Zbl 0674.73054 · doi:10.1002/nme.1620280210
[5] Belytschko, T; Ong, JS; Liu, WK, A consistent control of spurious singular modes in the 9-node Lagrangian element for the Laplace and Mindlin plate equations, Comput Methods Appl Mech Eng, 44, 269-295, (1985) · Zbl 0525.73086 · doi:10.1016/0045-7825(84)90133-6
[6] Betsch, P; Gruttmann, F; Stein, E, A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains, Comput Methods Appl Mech Eng, 130, 57-79, (1996) · Zbl 0861.73068 · doi:10.1016/0045-7825(95)00920-5
[7] Bischoff, M; Ramm, E, Shear deformable shell elements for large strains and rotations, Int J Numer Meth Eng, 40, 4427-4449, (1997) · Zbl 0892.73054 · doi:10.1002/(SICI)1097-0207(19971215)40:23<4427::AID-NME268>3.0.CO;2-9
[8] Bucalem, ML; Bathe, K-J, Higher-order MITC general shell elements, Int J Numer Meth Eng, 36, 3729-3754, (1993) · Zbl 0800.73466 · doi:10.1002/nme.1620362109
[9] Celia, MA; Gray, WG, An improved isoparametric transformation for finite element analysis, Int J Numer Meth Eng, 20, 1447-1459, (1984) · Zbl 0537.73061 · doi:10.1002/nme.1620200808
[10] Campello, EMB; Pimenta, PM; Wriggers, P, A triangular finite shell element based on a fully nonlinear shell formulation, Comput Mech, 31, 505-518, (2003) · Zbl 1038.74628 · doi:10.1007/s00466-003-0458-8
[11] Chapelle D, Bathe KJ (2003) The finite element analysis of shells-Fundamentals. Springer, Berlin · Zbl 1103.74003 · doi:10.1007/978-3-662-05229-7
[12] Chróścielewski, J; Makowski, J; Stumpf, H, Genuinely resultant shell finite elements accounting for geometric and material nonlinearity, Int J Numer Meth Eng, 35, 63-94, (1992) · Zbl 0780.73075 · doi:10.1002/nme.1620350105
[13] Chróścielewski J, Makowski J, Pietraszkiewicz W (2004) Statics and dynamics of multi-segmented shells Nonlinear theory and finite element method. IFTR PAS Publisher, Warsaw (in Polish)
[14] Cook, RD, Improved two dimensional finite element, J Struct Div ASCE, 100, 1851-1863, (1976)
[15] Ergatoudis, I; Irons, BM; Zienkiewicz, OC, Curved, isoparametric, quadrilateral elements for finite element analysis, Int J Solids Struct, 4, 31-42, (1968) · Zbl 0152.42802 · doi:10.1016/0020-7683(68)90031-0
[16] Gruttmann, F; Wagner, W, Structural analysis of composite laminates using a mixed hybrid shell element, Comput Mech, 37, 479-497, (2006) · Zbl 1158.74358 · doi:10.1007/s00466-005-0730-1
[17] Huang H-C (1989) Static and dynamic analyses of plates and shells. Springer, Berlin · doi:10.1007/978-1-4471-1669-1
[18] Huang, HC; Hinton, E, A nine node Lagrangian Mindlin plate element with enhanced shear interpolation, Eng Comput, 1, 369-379, (1984) · doi:10.1108/eb023593
[19] Huang, HC; Hinton, E, A new nine node degenerated shell element with enhanced membrane and shear interpolation, Int J Numer Meth Eng, 22, 73-92, (1986) · Zbl 0593.73076 · doi:10.1002/nme.1620220107
[20] Hughes, TJR; Brezzi, F, On drilling degrees of freedom, Comput Methods Appl Mech Eng, 72, 105-121, (1989) · Zbl 0691.73015 · doi:10.1016/0045-7825(89)90124-2
[21] Jang, J; Pinsky, PM, An assumed covariant strain based 9-node shell element, Int J Numer Meth Eng, 24, 2389-2411, (1987) · Zbl 0623.73090 · doi:10.1002/nme.1620241211
[22] Jarzebski, P; Wisniewski, K; Taylor, RL, On parallelization of the loop over elements in FEAP, Comput Mech, 56, 77-86, (2015) · Zbl 1329.65337 · doi:10.1007/s00466-015-1156-z
[23] Korelc, J, Multi-language and multi-environment generation of nonlinear finite element codes, Eng Comput, 18, 312-327, (2002) · doi:10.1007/s003660200028
[24] Korelc J, Wriggers P (2016) Automation of finite element methods. Springer, Berlin · Zbl 1367.74001 · doi:10.1007/978-3-319-39005-5
[25] Koschnick, F; Bischoff, GA; Camprubi, N; Bletziger, KU, The discrete strain gap method and membrane locking, Comput Methods Appl Mech Eng, 194, 2444-2463, (2005) · Zbl 1082.74053 · doi:10.1016/j.cma.2004.07.040
[26] Lee, N-S; Bathe, K-J, Effects of element distortions on the performance of isoparametric elements, Int J Numer Meth Eng, 36, 3553-3576, (1993) · Zbl 0800.73465 · doi:10.1002/nme.1620362009
[27] MacNeal, RH; Harder, RL, A proposed standard set of problems to test finite element accuracy, Finite Elem Anal Des, 1, 3-20, (1985) · doi:10.1016/0168-874X(85)90003-4
[28] Panasz, P; Wisniewski, K, Nine-node shell elements with 6 dofs/node based on two-level approximations. part I: theory and linear tests, Finite Elem Anal Des, 44, 784-796, (2008) · doi:10.1016/j.finel.2008.05.002
[29] Panasz P (2008) Nonlinear models of shells with 6 dofs based on two-level approximations. Ph. D. thesis (in Polish) IFTR PAS
[30] Panasz, P; Wisniewski, K; Turska, E, Reduction of mesh distortion effects for nine-node elements using corrected shape functions, Finite Elem Anal Des, 66, 83-95, (2013) · Zbl 1282.74093 · doi:10.1016/j.finel.2012.11.003
[31] Park, KC; Stanley, GM, A curved \(C^0\) shell element based on assumed natural-coordinate strains, Trans ASME, 53, 278-290, (1986) · Zbl 0588.73137 · doi:10.1115/1.3171752
[32] Pawsey, SF; Clough, RW, Improved numerical integration of thick shell finite elements, Int J Numer Meth Eng, 3, 575-586, (1971) · Zbl 0248.73035 · doi:10.1002/nme.1620030411
[33] Robinson J, Blackham S (1979) An evaluation of lower order membranes as contained in MSC/NASTRAN, ASA and PAFEC FEM systems. Robinson and Associates, Dorset
[34] Sansour, C; Bufler, H, An exact finite rtation shell theory, its mixed variational formulation and its finite element implementation, Comput Methods Appl Mech Eng, 34, 73-115, (1992) · Zbl 0760.73043
[35] Sansour, C; Bednarczyk, H, The Cosserat surface as a shell model, theory and finite-element formulation, Comput Methods Appl Mech Eng, 120, 1-32, (1995) · Zbl 0851.73038 · doi:10.1016/0045-7825(94)00054-Q
[36] Sansour, C; Kollmann, FG, Families of 4-node and 9-node finite elements for a finite deformation shell theory. an assesment of hybrid stress, hybrid strain and enhanced strain elements, Comput Mech, 24, 435-447, (2000) · Zbl 0959.74072 · doi:10.1007/s004660050003
[37] Simo, JC; Fox, DD; Hughes, TJR, Formulations of finite elasticity with independent rotations., Int J Numer Meth Eng, 95, 227-288, (1992) · Zbl 0759.73022
[38] Simo, JC; Fox, DD; Rifai, MS, On a stress resultant geometrically exact shell model. part III: computational aspects of the nonlinear theory, Comput Methods Appl Mech Eng, 79, 21-70, (1990) · Zbl 0746.73015 · doi:10.1016/0045-7825(90)90094-3
[39] Simo, JC; Rifai, MS, A class of mixed assumed strain methods and the method of incompatible modes, Int J Numer Meth Eng, 29, 1595-1638, (1990) · Zbl 0724.73222 · doi:10.1002/nme.1620290802
[40] Taylor, RL; Beresford, PJ; Wilson, EL, A non-conforming element for stress analysis, Int J Numer Meth Eng, 10, 1211-1220, (1976) · Zbl 0338.73041 · doi:10.1002/nme.1620100602
[41] Wagner, W; Gruttmann, F, A robust nonlinear mixed hybrid quadrilateral shell element, Int J Numer Meth Eng, 64, 635-666, (2005) · Zbl 1122.74526 · doi:10.1002/nme.1387
[42] Wilson, EL; Taylor, RL; Doherty, WP; Ghaboussi, J; Fenves, SJ (ed.); Perrone, N (ed.); Robinson, AR (ed.); Schnobrich, WC (ed.), Incompatible displacement models, 43-57, (1973), Cambridge
[43] Wisniewski, K; Panasz, P, Two improvements in formulation of nine-node element MITC9, Int J Numer Meth Eng, 93, 612-634, (2013) · Zbl 1352.74448 · doi:10.1002/nme.4399
[44] Wisniewski, K; Turska, E, Second order shell kinemtaics implied by rotation constraint equation, Eng Comput J Elast, 67, 229-246, (2002) · Zbl 1089.74619
[45] Wisniewski, K; Wagner, W; Turska, E; Gruttmann, F, Four-node hu-washizu elements based on skew coordinates and contravariant assumed strain, Comput Struct, 88, 1278-1284, (2010) · doi:10.1016/j.compstruc.2010.07.008
[46] Wisniewski, K; Turska, E, Enhanced allman quadrilateral for finite drilling rotations, Comput Methods Appl Mech Eng, 195, 6086-6109, (2006) · Zbl 1145.74040 · doi:10.1016/j.cma.2005.11.003
[47] Wisniewski, K; Turska, E, Improved four-node hu-washizu elements based on skew coordinates, Comput Struct, 87, 407-424, (2009) · doi:10.1016/j.compstruc.2009.01.011
[48] Wisniewski, K; Turska, E, Four-node mixed hu-washizu shell element with drilling rotation, Int J Numer Meth Eng, 90, 506-536, (2012) · Zbl 1242.74173 · doi:10.1002/nme.3335
[49] Wisniewski, K; Turska, E; Altenbach, H (ed.); Eremeyev, VA (ed.), Selected topics on mixed/enhanced four-node shell elements with drilling rotation, 247-288, (2017), Berlin · doi:10.1007/978-3-319-42277-0_6
[50] Wong, BL; Belytschko, T, Assumed strain stabilization procedure for the 9-node Lagrange plane and plate elements, Eng Comput, 4, 229-239, (1987) · doi:10.1108/eb023701
[51] Wriggers, P; Hueck, U, A formulation of the QS6 element for large elastic deformations, Int J Numer Meth Eng, 39, 1437-1454, (1996) · Zbl 0865.73069 · doi:10.1002/(SICI)1097-0207(19960515)39:9<1437::AID-NME905>3.0.CO;2-P
[52] Zienkiewicz OC, Taylor RL (1989) The finite element method basic formulation and linear problems, vol 1, 4th edn. McGraw-Hill, New York · Zbl 0974.76003
[53] Zienkiewicz, OC; Taylor, RL; Too, JM, Reduced integration technique in general analysis of plates and shells’, Int J Numer Meth Eng, 3, 275-290, (1971) · Zbl 0253.73048 · doi:10.1002/nme.1620030211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.