×

GTAW liquid pool convections and the weld shape variations under helium gas shielding. (English) Zbl 1211.80010

Summary: The effect of the active element oxygen and the welding parameters (welding speed, welding current and electrode gap) on the liquid pool convections and the weld shape variations under helium gas shielding is systematically investigated using a mathematical model of the welding arc and weld pool during a moving GTAW of SUS304 stainless steel. Different welding parameters will change the temperature distribution on the pool surface, and affect the strength of the Marangoni convection and the weld shape. The inward convection induced by the electromagnetic force is contributive to the increase of the weld depth. A higher welding speed, lower welding current or larger electrode gap will make the weld D/W ratio decrease when the oxygen content in the weld pool is high. Under low oxygen content, a lower welding speed, welding current or shorter electrode gap will lead to a higher weld D/W ratio. The predicted weld D/W ratio by simulation agrees well with the experimental results.

MSC:

80A20 Heat and mass transfer, heat flow (MSC2010)
76R10 Free convection
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Heiple, C. R.; Roper, J. R.: Mechanism for miner element effect on GTA fusion zone geometry, Weld. J. 61, 97s-102s (1982)
[2] Heiple, C. R.; Burgradt, P.: Effects of SO2 shielding gas additions on GTA weld pool shape, Weld. J. 64, 159s-162s (1985)
[3] Fan, D.; Zhang, R. H.; Gu, Y. F.; Ushio, M.: Effect of flux on A-TIG welding of mild steels, Trans. JWRI 30, 35-40 (2001)
[4] Tanaka, M.; Shimizu, T.; Terasaki, H.; Ushio, M.; Koshi-Ishi, F.; Yang, C. -L.: Effects of activating flux on arc phenomena in gas tungsten arc welding, Sci. technol. Weld. joining 5, No. 6, 397-402 (2000)
[5] Lucas, W.; House, D. S.: Activating flux-increasing the performance and productivity of the TIG and plasma processes, Weld. metal fabr. 64, 11-17 (1996)
[6] Mills, K. C.; Keene, B. J.: Factors affecting variable weld penetration, Int. mater. Rev. 35, No. 4, 185-216 (1990)
[7] Leconte, S.; Paillard, P.; Chapelle, P.: Effect of oxide fluxes on activation mechanisms of tungsten inert gas process, Sci. technol. Weld. joining 11, No. 4, 389-397 (2006)
[8] Leconte, S.; Paillard, P.; Saindrenan, J.: Effect of fluxes containing oxides on tungsten inert gas welding process, Sci. technol. Weld. joining 11, No. 1, 43-47 (2006)
[9] Lu, S. P.; Fujii, H.; Sugiyama, H.; Tanaka, M.; Nogi, K.: Effects of oxygen additions to argon shielding gas on GTA weld shape, ISIJ int. 43, No. 10, 1590-1595 (2003)
[10] Lu, S. P.; Fujii, H.; Nogi, K.: Marangoni convection and weld shape variations in ar – O2 and ar – CO2 shielded GTA welding, Mater. sci. Eng., A 380, 290-297 (2004)
[11] Fujii, H.; Sato, T.; Nogi, S. P. Lu.K.: Development of an advanced A-TIG (AA-TIG) welding method by control of Marangoni convection, Mater. sci. Eng., A 495, 296-303 (2008)
[12] Zacharia, T.; David, S. A.; Vitek, J. M.; Debroy, T.: Weld pool development during GTA and laser welding of type 304 stainless steel, part I-theoretical analysis, Weld. J. 68, 499s-509s (1989)
[13] Zacharia, T.; David, S. A.; Vitek, J. M.; Debroy, T.: Weld pool development during GTA and laser welding of type 304 stainless steel, part II-experimental correlation, Weld. J. 68, 510s-519s (1989)
[14] Kou, S.; Sun, D. K.: Fluid flow and weld penetration in stationary arc welds, Metall. trans. A 16A, 203-213 (1985)
[15] Xe, H.; Debroy, T.; Fuerschbach, P. W.: Alloying element vaporization during laser spot welding of stainless steel, J. phys. D: appl. Phys. 36, 1388-1398 (2003)
[16] Wang, Y.; Shi, Q.; Tsai, H. L.: Modeling of the effects of surface-active elements on flow patterns and weld penetration, Metall. mater. Trans. B 32, No. 1, 145-161 (2001)
[17] Zhao, Y. Z.; Zhao, H. Y.; Lei, Y. P.; Shi, Y. W.: Theoretical study of Marangoni convection and weld penetration under influence of high oxygen content in base metal, Sci. technol. Weld. joining 12, No. 5, 410-417 (2007)
[18] Zhang, R. H.; Fan, D.: Numerical simulation of effects of activating flux on flow patterns and weld penetration in ATIG welding, Sci. technol. Weld. joining 12, No. 1, 15-23 (2007)
[19] Dong, W. C.; Lu, S. P.; Li, D. Z.; Li, Y. Y.: Numerical simulation of effects of the minor active-element oxygen on the Marangoni convection and the weld shape, Acta metall. Sin. 44, No. 2, 249-256 (2008)
[20] Tanaka, M.; Lowke, J. J.: Predictions of weld pool profiles using plasma physics, J. phys. D: appl. Phys. 40, R1-R23 (2007)
[21] Mckelliget, J.; Szekely, J.: Heat transfer and fluid flow in the welding arc, Metall. trans. A 17, No. 7, 1139-1148 (1986)
[22] Lu, S. P.; Dong, W. C.; Li, D. Z.; Li, Y. Y.: Numerical study and comparisons of gas tungsten arc properties between argon and nitrogen, Comput. mater. Sci. 45, 327-335 (2009)
[23] Lago, F.; Gonzalez, J. J.; Freton, P.; Gleizes, A.: A numerical modeling of an electric arc and its interaction with the anode: part I. The two-dimensional model, J. phys. D: appl. Phys. 37, 883-897 (2004)
[24] Voller, V. R.; Prakash, C.: A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat mass transfer 30, No. 8, 1709-1719 (1987)
[25] Brent, A. D.; Voller, V. R.: Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal, Numer. heat transfer 13, 297-318 (1988)
[26] Gonzalez, J. J.; Lago, F.; Freton, P.; Masquere, M.; Franceries, X.: Numerical modeling of an electric arc and its interaction with the anode: part II. The three-dimensional model-influence of external forces on the arc column, J. phys. D: appl. Phys. 38, 306-318 (2005)
[27] Choo, R. T. C.; Szekely, J.: The possible role of turbulence in GTA weld pool behavior, Weld. J. 73, 25s-31s (1994)
[28] Goodarzi, M.; Choo, R.; Takasu, T.; Toguri, J. M.: The effect of the cathode tip angle on the gas tungsten arc welding arc and weld pool: II. The mathematical model for the weld pool, J. phys. D: appl. Phys. 31, 569-583 (1998)
[29] Hong, K.; Weckman, D. C.; Strong, A. B.; Zheng, W.: Modelling turbulent thermofluid flow in stationary gas tungsten arc weld pools, Sci. technol. Weld. joining 7, No. 3, 125-136 (2002)
[30] Hong, K.; Weckman, D. C.; Strong, A. B.; Zheng, W.: Vorticity based turbulence model for thermofluids modeling of welds, Sci. technol. Weld. joining 8, No. 5, 313-324 (2003)
[31] Hsu, K. C.; Pfender, E.: Two-temperature modeling of the free-burning, high-intensity arc, J. appl. Phys. 54, No. 3, 4359-4366 (1983)
[32] Alexis, J.; Ramirez, M.; Trapaga, G.; Jonsson, P.: Modeling of a DC electric arc furnace-heat transfer from the arc, ISIJ int. 40, No. 11, 1089-1097 (2000)
[33] Wu, C. S.; Gao, J. Q.: Analysis of the heat flux distribution at the anode of a TIG welding arc, Comput. mater. Sci. 24, 323-327 (2002)
[34] Sahoo, P.; Debroy, T.; Mcnallan, M. J.: Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy, Metall. mater. Trans. B. 19, No. 2, 483-491 (1988)
[35] Boulos, M. I.; Fauchais, P.; Pfender, E.: Thermal plasmas – fundamentals and applications, Thermal plasmas – fundamentals and applications 1 (1994)
[36] Cram, L. E.: Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines, J. phys. D: appl. Phys. 18, 401-412 (1985)
[37] Fan, H. G.; Kovacevic, R.: A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool, J. phys. D: appl. Phys. 37, 2531-2544 (2004)
[38] Fluent Inc., FLUENT User’s Manual, Lebanon, NH, 2005.
[39] Patankar, S. V.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
[40] Lu, S. P.; Fujii, H.; Nogi, K.; Sato, T.: Effect of oxygen content in he – O2 shielding gas on weld shape in ultra deep penetration TIG, Sci. technol. Weld. joining 12, No. 8, 689-695 (2007)
[41] Burgardt, P.; Heiple, C. R.: Interaction between impurities and welding variables in determining GTA weld shape, Weld. J. 65, 341s-347s (1986)
[42] R.E. Sundell, H.D. Solomon, L.P. Harris, L.A. Wojcik, W.F. Savage, D.W. Walsh, Interim Report to the National Science Foundation, General Electric Co., Schenectady, New York, 1983, SRD-93-006.
[43] Lin, M. L.; Eagar, T. W.: Influence of arc pressure on weld pool geometry, Weld. J. 64, 163s-169s (1985)
[44] Kim, S. D.; Na, S. J.: Effect of weld pool deformation in weld penetration in stationary gas tungsten arc welding, Weld. J. 71, 179s-193s (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.