×

The effects of Prandtl number on wavy weld boundary. (English) Zbl 1167.80397

Summary: The effects of Prandtl number on two-dimensional thermocapillary convection and molten pool shape induced by negative surface tension coefficient in welding or melting with a time-dependent and distributed incident flux are numerically predicted in this study. This work is also applicable for predicting the quasi-steady three-dimensional thermocapillary convection. In this model, the time-dependent incident flux is specified as a function of scanning speed and energy distribution parameter. The computed flow patterns and molten pool shapes under the flat free surface are found to have distinct regions for different Marangoni and Prandtl numbers. Prandtl number indicates the thickness ratio between momentum and thermal boundary layers, whereas Marangoni number with negative surface tension coefficient induces an outward surface flow. Rather than the enhanced pool depth resulted from melting from an induced vortex cell near the bottom in the case of Prandtl number much less than unity, the molten pool shape for Prandtl number much greater than unity can produce a thin and narrow edge. The variations of Peclet number and dimensionless beam power with flow and temperature fields and fusion zone shapes are similar. The dimensionless peak surface speed versus product of Marangoni and Prandtl number, which involve predicted peak speed and temperature and molten pool width on the surface, agree with scale analysis and experimental data provided in the literature.

MSC:

80A22 Stefan problems, phase changes, etc.
76R10 Free convection
76D45 Capillarity (surface tension) for incompressible viscous fluids
Full Text: DOI

References:

[1] Kou, S.: Welding metallurgy, (1987)
[2] David, S. A.; Debroy, T.: Current issues and problems in welding science, Science 257, 497-502 (1992)
[3] Zacharia, T.; Vitek, J. M.; Goldak, J. A.; Debroy, T.; Rappaz, M.; Bhadeshia, H. K. D.H.: Modeling of fundamental phenomena in welds, Modell. simul. Mater. sci. Eng. 3, 265-288 (1995)
[4] Mundra, K.; Debroy, T.; Babu, S. S.; David, S. A.: Weld metal microstructure calculations from fundamentals of transport phenomena in the arc welding of low-alloy steels, Welding J. 76, 163-s-171-s (1997)
[5] Liu, W.; Dupont, J. N.: Effects of melt-pool geometry on crystal growth and microstructure development in laser surface-melted superalloy single crystals. Mathematical modeling of single-crystal growth in a melt pool (part I), Acta mater. 52, 4833-4847 (2004)
[6] Kou, S.; Wang, Y. H.: Weld pool convection and its effect, Welding J. 65, 63-s-70-s (1986)
[7] Basu, B.; Date, A. W.: Numerical study of steady state and transient laser melting problems-I: characteristics of flow field and heat transfer, Int. J. Heat mass transfer 33, 1149-1163 (1990)
[8] Kanouff, M.; Greif, R.: The unsteady development of a GTA weld pool, Int. J. Heat mass transfer 35, 967-979 (1992) · Zbl 0825.76939 · doi:10.1016/0017-9310(92)90261-P
[9] Zacharia, T.; David, S. A.; Vitek, J. M.; Debroy, T.: Weld pool development during GTA and laser beam welding of type 304 stainless steel, part I – theoretical analysis, Welding J. 68, 499-s-509-s (1989)
[10] Chan, C.; Mazumder, J.; Chen, M. M.: A two-dimensional transient model for convection in laser melted pools, Metall. trans. 15A, 2175-2184 (1984)
[11] Paul, A.; Debroy, T.: Free surface flow and heat transfer in conduction mode laser welding, Metall. trans. 19B, 851-858 (1988)
[12] Mundra, K.; Debroy, T.: Toward understanding alloying element vaporization during laser beam welding of stainless steel, Welding J. 72, 1-s-9-s (1993)
[13] Wei, P. S.; Chang, C. Y.; Chen, C. T.: Surface ripple in electron-beam welding solidification, J. heat transfer 118, 960-969 (1996)
[14] Gratzke, U.; Kapadia, P. D.; Dowden, J.; Kroos, J.; Simon, G.: Theoretical approach to the humping phenomenon in welding processes, J. phys. D: appl. Phys. 25, 1640-1647 (1992)
[15] Mendez, P. F.; Eagar, T. W.: Penetration and defect formation in high-current arc welding, Welding J. 82, 296-s-306-s (2003)
[16] Kumar, A.; Debroy, T.: Toward a unified model to prevent humping defects in gas tungsten arc welding, Welding J. 85, 292-s-304-s (2006)
[17] Tong, H.; Giedt, W. H.: A dynamic interpretation of electron beam welding, Welding J. 49, 259-s-266-s (1970)
[18] Schauer, D. A.; Giedt, W. H.: Prediction of electron beam welding spiking tendency, Welding J. 57, 189-s-195-s (1978)
[19] W.H. Giedt, A periodic melting model of high intensity electron beam welding, in: M. Rappaz, M.R. Özgü, K.W. Mahin, (Eds.), Proceedings of the 5th International Conference on Modeling of Casting, Welding, and Advanced Solidification Processes-V, Davos, Switzerland, September 16 – 21, TMMMS, Warrendale, PA, 1991, pp. 115 – 122.
[20] Wei, P. S.; Kuo, Y. K.; Chiu, S. H.; Ho, C. Y.: Shape of a pore trapped in solid during solidification, Int. J. Heat mass transfer 43, 263-280 (2000) · Zbl 0945.76588 · doi:10.1016/S0017-9310(99)00134-9
[21] Heiple, C. R.; Roper, J. R.: Mechanism for minor element effect on GTA fusion zone geometry, Welding J. 61, 97-s-102-s (1982)
[22] Limmaneevichitr, C.; Kou, S.: Experiments to simulate effect of Marangoni convection on weld pool shape, Welding J. 79, 231-s-237-s (2000)
[23] Chung, F. K.; Wei, P. S.: Mass, momentum, and energy transport in a molten pool when welding dissimilar metals, J. heat transfer 121, 451-461 (1999)
[24] Wei, P. S.; Chung, F. K.: Unsteady Marangoni flow in a molten pool when welding dissimilar metals, Metall. mater. Trans. B 31B, 1387-1403 (2000)
[25] Wei, P. S.; Ting, C. N.; Yeh, J. S.; Debroy, T.; Chung, F. K.; Yan, G. H.: Origin of wavy weld boundary, J. appl. Phys. 105, 053508-1-053508-8 (2009)
[26] Hicken, G. K.; Giedt, W. H.; Bentley, A. E.: Correlation of joint penetration with electron beam current distribution, Welding J. 70, 69-s-75-s (1991)
[27] P. Burgardt, Electron beam beam size calibration, in: L.N. Tallerico, (Eds.), Summary of Calibration of Welding Systems Meeting, Sandia National Lab., Livermore, CA, 1986, pp. 258 – 266.
[28] Sen, A. K.; Davis, S. H.: Steady thermocapillary flows in two-dimensional slots, J. fluid mech. 121, 163-186 (1982) · Zbl 0501.76080 · doi:10.1017/S0022112082001840
[29] Salcudean, M.; Choi, M.; Greif, R.: A study of heat transfer during arc welding, Int. J. Heat mass transfer 29, 215-225 (1986)
[30] Ostrach, S.: Low-gravity fluid flows, Annu. rev. Fluid mech. 14, 313-345 (1982) · Zbl 0531.76094
[31] Chen, M. M.: Thermocapillary convection in materials processing, Interdisciplinary issues in materials processing and manufacturing, 541-558 (1987)
[32] Rivas, D.; Ostrach, S.: Scaling of low-Prandtl-number thermocapillary flows, Int. J. Heat mass transfer 35, 1469-1479 (1992) · Zbl 0753.76045 · doi:10.1016/0017-9310(92)90037-S
[33] Zacharia, T.; David, S. A.; Vitek, J. M.; Debroy, T.: Weld pool development during GTA and laser beam welding of type 304 stainless steel, part II – experimental correlation, Welding J. 68, 510-s-519-s (1989)
[34] Mundra, K.; Debroy, T.; Zacharia, T.; David, S. A.: Role of thermophysical properties in weld pool modeling, Welding J. 71, 313-s-320-s (1992)
[35] Pitscheneder, W.; Debroy, T.; Mundra, K.; Ebner, R.: Role of sulfur and processing variables on the temporal evolution of weld pool geometry during multikilowatt laser beam welding of steels, Welding J. 75, 71-s-80-s (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.