×

Additive regression for non-Euclidean responses and predictors. (English) Zbl 1486.62109

Summary: Additive regression is studied in a very general setting where both the response and predictors are allowed to be non-Euclidean. The response takes values in a general separable Hilbert space, whereas the predictors take values in general semimetric spaces, which covers a very wide range of nonstandard response variables and predictors. A general framework of estimating additive models is presented for semimetric space-valued predictors. In particular, full details of implementation and the corresponding theory are given for predictors taking values in Hilbert spaces and/or Riemannian manifolds. The existence of the estimators, convergence of a backfitting algorithm, rates of convergence and asymptotic distributions of the estimators are discussed. The finite sample performance of the estimators is investigated by means of two simulation studies. Finally, three data sets covering several types of non-Euclidean data are analyzed to illustrate the usefulness of the proposed general approach.

MSC:

62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
62R30 Statistics on manifolds

Software:

gamair

References:

[1] Chacón, J. E., Mateu-Figueras, G. and Martín-Fernández Lauder, J. A. (2014). Gaussian kernels for density estimation with compositional data. Comput. Geosci. 37 702-711.
[2] Chakraborty, R. and Vemuri, B. C. (2019). Statistics on the Stiefel manifold: Theory and applications. Ann. Statist. 47 415-438. · Zbl 1419.62132 · doi:10.1214/18-AOS1692
[3] Cheng, M.-Y. and Wu, H.-T. (2013). Local linear regression on manifolds and its geometric interpretation. J. Amer. Statist. Assoc. 108 1421-1434. · Zbl 1426.62402 · doi:10.1080/01621459.2013.827984
[4] Cornea, E., Zhu, H., Kim, P. and Ibrahim, J. G. (2017). Regression models on Riemannian symmetric spaces. J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 463-482. · Zbl 1414.62177 · doi:10.1111/rssb.12169
[5] Di Marzio, M., Panzera, A. and Taylor, C. C. (2009). Local polynomial regression for circular predictors. Statist. Probab. Lett. 79 2066-2075. · Zbl 1171.62327 · doi:10.1016/j.spl.2009.06.014
[6] Di Marzio, M., Panzera, A. and Taylor, C. C. (2014). Nonparametric regression for spherical data. J. Amer. Statist. Assoc. 109 748-763. · Zbl 1367.62115 · doi:10.1080/01621459.2013.866567
[7] Di Marzio, M., Panzera, A. and Venieri, C. (2015). Non-parametric regression for compositional data. Stat. Model. 15 113-133. · Zbl 07258981 · doi:10.1177/1471082X14535522
[8] Dryden, I. L. and Mardia, K. V. (2016). Statistical Shape Analysis with Applications in R, 2nd ed. Wiley Series in Probability and Statistics. Wiley, Chichester. · Zbl 1381.62003 · doi:10.1002/9781119072492
[9] Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. and Barceló-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Math. Geol. 35 279-300. · Zbl 1302.86024 · doi:10.1023/A:1023818214614
[10] Fan, Y., James, G. M. and Radchenko, P. (2015). Functional additive regression. Ann. Statist. 43 2296-2325. · Zbl 1327.62252 · doi:10.1214/15-AOS1346
[11] Febrero-Bande, M. and González-Manteiga, W. (2013). Generalized additive models for functional data. TEST 22 278-292. · Zbl 1367.62116 · doi:10.1007/s11749-012-0308-0
[12] Gonzalez-Manteiga, W., Henry, G. and Rodriguez, D. (2012). Partly linear models on Riemannian manifolds. J. Appl. Stat. 39 1797-1809. · Zbl 1254.53024 · doi:10.1080/02664763.2012.683169
[13] Han, K., Müller, H.-G. and Park, B. U. (2018). Smooth backfitting for additive modeling with small errors-in-variables, with an application to additive functional regression for multiple predictor functions. Bernoulli 24 1233-1265. · Zbl 1419.62088 · doi:10.3150/16-BEJ898
[14] Han, K., Müller, H.-G. and Park, B. U. (2020). Additive functional regression for densities as responses. J. Amer. Statist. Assoc. 115 997-1010. · Zbl 1445.62335 · doi:10.1080/01621459.2019.1604365
[15] Han, K. and Park, B. U. (2018). Smooth backfitting for errors-in-variables additive models. Ann. Statist. 46 2216-2250. · Zbl 1404.62038 · doi:10.1214/17-AOS1617
[16] Henry, G. and Rodriguez, D. (2009). Kernel density estimation on Riemannian manifolds: Asymptotic results. J. Math. Imaging Vision 34 235-239. · Zbl 1490.62513 · doi:10.1007/s10851-009-0145-2
[17] Hielscher, R. (2013). Kernel density estimation on the rotation group and its application to crystallographic texture analysis. J. Multivariate Anal. 119 119-143. · Zbl 1277.62105 · doi:10.1016/j.jmva.2013.03.014
[18] Jeon, J. M. and Park, B. U. (2020). Additive regression with Hilbertian responses. Ann. Statist. 48 2671-2697. · Zbl 1471.62328 · doi:10.1214/19-AOS1902
[19] Jeon, J. M., Park, B. U. and Van Keilegom, I. (2021). Supplement to “Additive regression for non-Euclidean responses and predictors.” https://doi.org/10.1214/21-AOS2048SUPP · Zbl 1471.62329
[20] Kent, J. T. (1994). The complex Bingham distribution and shape analysis. J. Roy. Statist. Soc. Ser. B 56 285-299. · Zbl 0806.62040
[21] Kim, J. S., Staicu, A.-M., Maity, A., Carroll, R. J. and Ruppert, D. (2018). Additive function-on-function regression. J. Comput. Graph. Statist. 27 234-244. · Zbl 07498981 · doi:10.1080/10618600.2017.1356730
[22] Lang, R. (1986). A note on the measurability of convex sets. Arch. Math. (Basel) 47 90-92. · Zbl 0607.28003 · doi:10.1007/BF01202504
[23] Le, H. L. and Kendall, D. G. (1993). The Riemannian structure of Euclidean shape spaces: A novel environment for statistics. Ann. Statist. 21 1225-1271. · Zbl 0831.62003 · doi:10.1214/aos/1176349259
[24] Lee, J. M. (2018). Introduction to Riemannian Manifolds. Graduate Texts in Mathematics 176. Springer, Cham. · Zbl 1409.53001
[25] Lee, Y. K., Mammen, E. and Park, B. U. (2010). Backfitting and smooth backfitting for additive quantile models. Ann. Statist. 38 2857-2883. · Zbl 1200.62039 · doi:10.1214/10-AOS808
[26] Lee, Y. K., Mammen, E. and Park, B. U. (2012). Flexible generalized varying coefficient regression models. Ann. Statist. 40 1906-1933. · Zbl 1257.62040 · doi:10.1214/12-AOS1026
[27] Lin, Z. and Yao, F. (2019). Intrinsic Riemannian functional data analysis. Ann. Statist. 47 3533-3577. · Zbl 1435.62264 · doi:10.1214/18-AOS1787
[28] Linton, O. and Nielsen, J. P. (1995). A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82 93-100. · Zbl 0823.62036 · doi:10.1093/biomet/82.1.93
[29] Mammen, E., Linton, O. and Nielsen, J. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Statist. 27 1443-1490. · Zbl 0986.62028 · doi:10.1214/aos/1017939137
[30] Marron, J. S. and Alonso, A. M. (2014). Overview of object oriented data analysis. Biom. J. 56 732-753. · Zbl 1309.62008 · doi:10.1002/bimj.201300072
[31] Nielsen, J. P. and Sperlich, S. (2005). Smooth backfitting in practice. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67 43-61. · Zbl 1060.62048 · doi:10.1111/j.1467-9868.2005.00487.x
[32] Opsomer, J. D. and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. Ann. Statist. 25 186-211. · Zbl 0869.62026 · doi:10.1214/aos/1034276626
[33] Pelletier, B. (2005). Kernel density estimation on Riemannian manifolds. Statist. Probab. Lett. 73 297-304. · Zbl 1065.62063 · doi:10.1016/j.spl.2005.04.004
[34] Pelletier, B. (2006). Non-parametric regression estimation on closed Riemannian manifolds. J. Nonparametr. Stat. 18 57-67. · Zbl 1088.62053 · doi:10.1080/10485250500504828
[35] Petersen, A. and Müller, H.-G. (2019). Fréchet regression for random objects with Euclidean predictors. Ann. Statist. 47 691-719. · Zbl 1417.62091 · doi:10.1214/17-AOS1624
[36] Reimherr, M., Sriperumbudur, B. and Taoufik, B. (2018). Optimal prediction for additive function-on-function regression. Electron. J. Stat. 12 4571-4601. · Zbl 1433.62112 · doi:10.1214/18-EJS1505
[37] Rosenthal, M., Wu, W., Klassen, E. and Srivastava, A. (2014). Spherical regression models using projective linear transformations. J. Amer. Statist. Assoc. 109 1615-1624. · Zbl 1368.62185 · doi:10.1080/01621459.2014.892881
[38] Sakai, T. (1996). Riemannian Geometry. Translations of Mathematical Monographs 149. Amer. Math. Soc., Providence, RI. Translated from the 1992 Japanese original by the author. · doi:10.1090/mmono/149
[39] Scheipl, F., Staicu, A.-M. and Greven, S. (2015). Functional additive mixed models. J. Comput. Graph. Statist. 24 477-501. · Zbl 1430.62082 · doi:10.1080/10618600.2014.901914
[40] Simó, A., Ibáñez, M. V., Epifanio, I. and Gimeno, V. (2020). Generalized partially linear models on Riemannian manifolds. J. R. Stat. Soc. Ser. C. Appl. Stat. 69 641-661.
[41] Tu, L. W. (2017). Differential Geometry. Springer, Berlin. · Zbl 1383.53001
[42] Wood, S. N. (2017). Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC. · Zbl 1368.62004
[43] Yu, K., Park, B. U. and Mammen, E. (2008). Smooth backfitting in generalized additive models. Ann. Statist. 36 228-260. · Zbl 1132.62028 · doi:10.1214/009053607000000596
[44] Yuan, Y., Zhu, H., Lin, W. and Marron, J. S. (2012). Local polynomial regression for symmetric positive definite matrices. J. R. Stat. Soc. Ser. B. Stat. Methodol. 74 697-719 · Zbl 1411.62110 · doi:10.1111/j.1467-9868.2011.01022.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.