×

On random tomography with unobservable projection angles. (English) Zbl 1193.60017

Author’s abstract: We formulate and investigate a statistical inverse problem of a random tomographic nature, where a probability density function in \(\mathbb{R}^3\) is to be recovered from observation of finitely many of its two-dimensional projections in random and unobservable directions. Such a problem is distinct from the classic problem of tomography where both the projections and the unit vectors normal to the projection plane are observable. The problem arises in single particle electron microscopy, a powerful method that biophysicists employ to learn the structure of biological macromolecules. Strictly speaking, the problem is unidentifiable and an appropriate reformulation is suggested hinging on ideas from Kendall’s theory of shape. Within this setup, we demonstrate that a consistent solution to the problem may be derived, without attempting to estimate the unknown angles, if the density is assumed to admit a mixture representation.

MSC:

60D05 Geometric probability and stochastic geometry
62H35 Image analysis in multivariate analysis
65R32 Numerical methods for inverse problems for integral equations
44A12 Radon transform

References:

[1] Baddeley, A. and Vedel-Jensen, E. B. (2005). Stereology for Statisticians . Chapman and Hall/CRC, Boca Raton, FL. · Zbl 1086.62108
[2] Beran, R., Feuerverger, A. and Hall, P. (1996). On nonparametric estimation of intercept and slope distributions in random coefficient regression. Ann. Statist. 24 2569-2592. · Zbl 0867.62021 · doi:10.1214/aos/1032181170
[3] Bookstein, F. L. (1978). The Measurement of Biological Shape and Shape Change. Lecture Notes in Biomathematics 24 . Springer, New York. · Zbl 0376.92003
[4] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201
[5] Brillinger, D. R., Downing, K. H. and Glaeser, R. M. (1990). Some statistical aspects of low-dose electron imaging of crystals. J. Statist. Plann. Inference 25 235-259. · doi:10.1016/0378-3758(90)90075-6
[6] Brillinger, D. R., Downing, K. H., Glaeser, R. M. and Perkins, G. (1989). Combining noisy images of small crystalline domains in high resolution electron microscopy. J. Appl. Statist. 16 165-175.
[7] Carathéodory, C. and Fejér, L. (1911). Über den zusammenghang der extemen von harmonischen funktionen mit ihren koeffizienten und über den Picard-Landausch Sätz. Rend. Circ. Mat. Palermo 32 218-239. · JFM 42.0430.01
[8] Chang, I.-S. and Hsiung, C. A. (1994). Asymptotic consistency of the maximum likelihood estimate in positron emission tomography and applications. Ann. Statist. 22 1871-1883. · Zbl 0824.62026 · doi:10.1214/aos/1176325761
[9] Chiu, W. (1993). What does electron cryomicroscopy provide that X-ray crystallography and NMR spectroscopy cannot? Ann. Rev. Biophys. Biomol. Struct. 22 233-255.
[10] Deans, S. R. (1993). The Radon Transform and Some of Its Applications . Krieger, Malabar, FL. · Zbl 0868.44001
[11] Donoho, D. L., Johnstone, I. M., Hoch, J. C. and Stern, A. S. (1992). Maximum entropy and the nearly black object (with discussion). J. Roy. Statist. Soc. Ser. B 54 41-81. JSTOR: · Zbl 0788.62103
[12] Drenth, J. (1999). Principles of Protein X-Ray Crystallography . Springer, New York.
[13] Dudley, R. M. (1968). Distances of probability measures and random variables. Ann. Math. Statist. 39 1563-1572. · Zbl 0169.20602
[14] Feuerverger, A. and Vardi, Y. (2000). Positron emission tomography and random coefficients regression. Ann. Inst. Statist. Math. 52 123-138. · Zbl 1064.92513 · doi:10.1023/A:1004141117010
[15] Frank, J. (1999). Three-Dimensional Electron Microscopy of Macromolecular Assemblies . Academic Press, San Diego.
[16] Garczarek, F., Dong, M., Typke, D., Witkowska, E., Hazen, T. C., Nogales, E., Biggin, M. D. and Glaeser, R. M. (2007). Octomeric pyruvate-ferredoxin oxidoreducatse from Desulfovibrio vulgaris. J. Struct. Biol. 159 9-18.
[17] Glaeser, R. M. (1985). Electron crystallography of biological macromolecules. Ann. Rev. Phys. Chem. 36 243-275.
[18] Glaeser, R. M. (1999). Review: Electron crystallography: Present excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128 3-14.
[19] Glaeser, R. M., Chiu, W., Frank, J., DeRosier D., Baumeister, W. and Downing, K. (2007). Electron Crystallography of Biological Macromolecules . Oxford Univ. Press, New York.
[20] Green, P. J. (1990). Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9 84-93.
[21] Grenander, U. and Szegö, G. (1958). Toeplitz Forms and Their Applications . Univ. California Press, Berkeley. · Zbl 0080.09501
[22] Helgason, S. (1980). The Radon Transform . Birkhäuser, Boston. · Zbl 0453.43011
[23] Henderson, R. (2004). Realizing the potential of electron cryo-microscopy. Q. Rev. Biophys. 37 3-13.
[24] James, L. F., Priebe, C. E. and Marchette, D. J. (2001). Consistent estimation of mixture complexity. Ann. Statist. 29 1281-1296. · Zbl 1043.62023 · doi:10.1214/aos/1013203454
[25] Jennrich, R. I. (1969). Asymptotic properties of nonlinear least squares estimators. Ann. Math. Statist. 40 633-643. · Zbl 0193.47201 · doi:10.1214/aoms/1177697731
[26] Jensen, S. R. (2004). Sufficient conditions for the inversion formula for the k -plane Radon transform in \Bbb R n . Math. Scand. 94 207-226. · Zbl 1058.44002
[27] Johnstone, I. M. and Silverman, B. W. (1990). Speed of estimation in positron emission tomography and related inverse problems. Ann. Statist. 18 251-280. · Zbl 0699.62043 · doi:10.1214/aos/1176347500
[28] Jones, M. C. and Silverman, B. W. (1989). An orthogonal series density estimation approach to reconstructing positron emission tomography images. J. Appl. Statist. 16 177-191.
[29] Kallenberg, O. (2002). Foundations of Modern Probability . Springer, New York. · Zbl 0996.60001
[30] Kanwal, R. P. (1997). Linear Integral Equations: Theory and Technique . Birkhäuser, Boston. · Zbl 0860.45001
[31] Kendall, D. G. (1977). The diffusion of shape. Adv. in Appl. Probab. 9 428-430.
[32] Kendall, D. G. and Kendall, W. S. (1980). Alignments in two-dimensional random sets of points. Adv. in Appl. Probab. 12 380-424. JSTOR: · Zbl 0425.60009 · doi:10.2307/1426603
[33] Kendall, W. S. and Le, H. (2009). Statistical Shape Theory. In New Perspectives in Stochastic Geometry (W. S. Kendall and I. S. Molchanov, eds.). Oxford Univ. Press (forthcoming). · Zbl 1192.62166
[34] Le, H. and Kendall, D. G. (1993). The Riemannian structure of Euclidean shape spaces: A novel environment for statistics. Ann. Statist. 21 1225-1271. · Zbl 0831.62003 · doi:10.1214/aos/1176349259
[35] Li, L. and Speed, T. (2000). Parametric deconvolution of positive spike trains. Ann. Statist. 28 1270-1301. · Zbl 1105.62382 · doi:10.1214/aos/1015957394
[36] Lukacs, E. (1975). Stochastic Convergence . Academic Press, New York. · Zbl 0312.60011
[37] Nagar, D. K. and Gupta, A. K. (2000). Matrix Variate Distributions . Chapman and Hall/CRC, Boca Raton, FL. · Zbl 0935.62064
[38] Natterer, F. (2001). The Mathematics of Computerized Tomography. Society for Industrial and Applied Mathematics (SIAM) 32 . Philadelphia, PA. · Zbl 0973.92020 · doi:10.1137/1.9780898719284
[39] O’Sullivan, F. (1995). A study of least squares and maximum likelihood for image reconstruction in positron emission tomography. Ann. Statist. 23 1267-1300. · Zbl 0839.62035 · doi:10.1214/aos/1176324709
[40] O’Sullivan, F. and Pawitan, Y. (1993). Multidimensional density estimation by tomography. J. Roy. Statist. Soc. Ser. B 55 509-521. JSTOR: · Zbl 0786.62056
[41] Panaretos, V. M. (2006). The diffusion of Radon shape. Adv. in Appl. Probab. 38 320-335. · Zbl 1125.60005 · doi:10.1239/aap/1151337074
[42] Panaretos, V. M. (2008). Representation of Radon shape diffusions via hyperspherical Brownian motion. Math. Proc. Cambridge Philos. Soc. 145 457-470. · Zbl 1180.60066 · doi:10.1017/S0305004108001370
[43] Panaretos, V. M. (2008). On random tomography in structural biology. Technical Report, No. 2008-3, Dept. Statistics, Stanford Univ.
[44] Peter, A. and Rangarajan, A. (2006). Shape analysis using the Fisher-Rao Riemannian metric: Unifying shape representation and deformation. In 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano 1 - 3 1164-1167. Arlington.
[45] Pisarenko, V. F. (1973). The retrieval of harmonics from a covariance function. Geophys. J. R. Astr. S. 33 347-366. · Zbl 0287.62048
[46] Schervish, M. J. (1995). Theory of Statistics . Springer, New York. · Zbl 0834.62002
[47] Shepp, L. A. and Kruskal, J. B. (1978). Computerized tomography: The new medical X-ray technology. Amer. Math. Monthly 85 420-439. JSTOR: · Zbl 0381.68079 · doi:10.2307/2320062
[48] Shepp, L. A. and Vardi, Y. (1982). Maximum likelihood reconstruction in positron emission tomography. IEEE Trans. Med. Imaging 1 113-122.
[49] Silverman, B. W., Jones, M. C., Wilson, J. D. and Nychka, D. W. (1990). A smoothed EM approach to indirect estimation problems with particular reference to stereology and emission tomography (with discussion). J. Roy. Statist. Soc. Ser. B 52 271-324. JSTOR: · Zbl 0703.62105
[50] Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A. and Nogales, E. (2005). Structural roles for human translation initiation factos eIF3 in initiation of protein synthesis. Science 310 1513-1515.
[51] Small, C. G. and Le, H. (2002). The statistical analysis of dynamic curves and sections. Pattern Recogn. 35 1597-1609. · Zbl 1016.68093 · doi:10.1016/S0031-3203(01)00149-2
[52] van der Vaart, A. W. (1998). Asymptotic Statistics . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256
[53] Vardi, Y., Shepp, L. A. and Kaufman, L. (1985). A statistical model for positron emission tomography (with discussion). J. Amer. Statist. Assoc. 80 8-37. JSTOR: · Zbl 0561.62094 · doi:10.2307/2288030
[54] Younes, L. (1998). Computable elastic distances between shapes. SIAM J. Appl. Math. 58 565-586. JSTOR: · Zbl 0907.68158 · doi:10.1137/S0036139995287685
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.