×

Adaptive confidence intervals for regression functions under shape constraints. (English) Zbl 1267.62066

Summary: Adaptive confidence intervals for regression functions are constructed under shape constraints of monotonicity and convexity. A natural benchmark is established for the minimum expected length of confidence intervals at a given function in terms of an analytic quantity, the local modulus of continuity. This bound depends not only on the function but also on the assumed function class. These benchmarks show that the constructed confidence intervals have near minimum expected length for each individual function, while maintaining a given coverage probability for functions within the class. Such adaptivity is much stronger than adaptive minimaxity over a collection of large parameter spaces.

MSC:

62G15 Nonparametric tolerance and confidence regions
62G08 Nonparametric regression and quantile regression

References:

[1] Cai, T. T. and Low, M. G. (2004). An adaptation theory for nonparametric confidence intervals. Ann. Statist. 32 1805-1840. · Zbl 1056.62060 · doi:10.1214/009053604000000049
[2] Cai, T. T. and Low, M. G. (2011). A framework for estimation of convex functions. Technical report. · Zbl 1277.62101
[3] Donoho, D. L. (1994). Statistical estimation and optimal recovery. Ann. Statist. 22 238-270. · Zbl 0805.62014 · doi:10.1214/aos/1176325367
[4] Donoho, D. L. and Liu, R. C. (1991). Geometrizing rates of convergence. III. Ann. Statist. 19 668-701. · Zbl 0754.62029 · doi:10.1214/aos/1176348115
[5] Dümbgen, L. (1998). New goodness-of-fit tests and their application to nonparametric confidence sets. Ann. Statist. 26 288-314. · Zbl 0930.62034 · doi:10.1214/aos/1030563987
[6] Dümbgen, L. (2003). Optimal confidence bands for shape-restricted curves. Bernoulli 9 423-449. · Zbl 1044.62051 · doi:10.3150/bj/1065444812
[7] Evans, S. N., Hansen, B. B. and Stark, P. B. (2005). Minimax expected measure confidence sets for restricted location parameters. Bernoulli 11 571-590. · Zbl 1092.62040 · doi:10.3150/bj/1126126761
[8] Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asymptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 521-528. · Zbl 1377.62102 · doi:10.1093/biomet/77.3.521
[9] Hengartner, N. W. and Stark, P. B. (1995). Finite-sample confidence envelopes for shape-restricted densities. Ann. Statist. 23 525-550. · Zbl 0828.62043 · doi:10.1214/aos/1176324534
[10] Lepski, O. V., Mammen, E. and Spokoiny, V. G. (1997). Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 929-947. · Zbl 0885.62044 · doi:10.1214/aos/1069362731
[11] Lepski, O. V. and Spokoiny, V. G. (1997). Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 2512-2546. · Zbl 0894.62041 · doi:10.1214/aos/1030741083
[12] Low, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547-2554. · Zbl 0894.62055 · doi:10.1214/aos/1030741084
[13] Munk, A., Bissantz, N., Wagner, T. and Freitag, G. (2005). On difference-based variance estimation in nonparametric regression when the covariate is high dimensional. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 19-41. · Zbl 1060.62047 · doi:10.1111/j.1467-9868.2005.00486.x
[14] Wang, L., Brown, L. D., Cai, T. T. and Levine, M. (2008). Effect of mean on variance function estimation in nonparametric regression. Ann. Statist. 36 646-664. · Zbl 1133.62033 · doi:10.1214/009053607000000901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.