×

Numerical solutions of time-fractional coupled viscous Burgers’ equations using meshfree spectral method. (English) Zbl 1449.65273

Summary: In this article, we compute numerical solutions of time-fractional coupled viscous Burgers’ equations using meshfree spectral method. Radial basis functions (RBFs) and spectral collocation approach are used for approximation of the spatial part. Temporal fractional part is approximated via finite differences and quadrature rule. Approximation quality and efficiency of the method are assessed using discrete \(E_2, E_{\infty }\) and \(E_{\text{rms}}\) error norms. Varying the number of nodal points \(M\) and time step-size \(\Delta t\), convergence in space and time is numerically studied. The stability of the current method is also discussed, which is an important part of this paper.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs

Software:

Matlab
Full Text: DOI

References:

[1] Bhatt, Hp; Khaliq, Aqm, Fourth-order compact schemes for the numerical simulation of coupled Burgers’ equation, Comput Phys Commun, 200, 117-138 (2016) · Zbl 1351.35167 · doi:10.1016/j.cpc.2015.11.007
[2] Caputo, M., Linear models of dissipation whose Q is almost frequency independent, part II, J R Astral Soc, 13, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[3] Chen, Y.; An, H-L, Numerical solutions of coupled Burgers equations with time-and space-fractional derivatives, Appl Math Comput, 200, 87-95 (2008) · Zbl 1143.65102
[4] Chen, W.; Ye, L.; Sun, H., Fractional diffusion equations by the Kansa method, Comput Math Appl, 59, 1614-1620 (2010) · Zbl 1189.35356 · doi:10.1016/j.camwa.2009.08.004
[5] Esipov, Se, Coupled Burgers’ equations: a model of polydispersive sedimentation, Phys Rev E, 52, 3711-3718 (1995) · doi:10.1103/PhysRevE.52.3711
[6] Fasshauer, Ge, Meshfree approximation methods with MATLAB (2007), River Edge: World Scientific, River Edge · Zbl 1123.65001
[7] Fujita, Y., Cauchy problems of fractional order and stable processes, Jpn J Appl Math, 7, 3, 459-476 (1990) · Zbl 0718.35026 · doi:10.1007/BF03167854
[8] Golbabai, A.; Mohebianfar, E.; Rabiei, H., On the new variable shape parameter strategies for radial basis functions, Comput Appl Math, 34, 2, 691-704 (2014) · Zbl 1322.65040 · doi:10.1007/s40314-014-0132-0
[9] Haq, S.; Hussain, M., Selection of shape parameter in radial basis functions for solution of time-fractional Black-Scholes models, Appl Math Comput, 335, 248-263 (2018) · Zbl 1427.35322
[10] Hayat, U.; Kamran, A.; Ambreen, B.; Yildirim, A.; Mohyud-Din, St, On system of time-fractional partial differential equations, Walailak J Sci Technol, 10, 5, 437-448 (2013)
[11] Hilfer, R., Foundations of fractional dynamics, Fractals, 3, 3, 549-556 (1995) · Zbl 0870.58041 · doi:10.1142/S0218348X95000485
[12] Hilfer, R., Fractional diffusion based on Riemann-Liouville fractional derivative, J Phys Chem, 104, 3914-3917 (2000) · doi:10.1021/jp9936289
[13] Hussain, M.; Haq, S.; Ghafoor, A., Meshless spectral method for solution of time-fractional coupled KdV equations, Appl Math Comput, 341, 321-334 (2019) · Zbl 1429.65242
[14] Kansa, Ej, Multiquadrics-a scattered data approximation scheme with application to computation fluid dynamics, II. Solutions to hyperbolic, parabolic, and elliptic partial differential equations, Comput Math Appl, 19, 149-161 (1990) · Zbl 0701.60024 · doi:10.1016/0898-1221(90)90095-2
[15] Karkowski, J., Numerical experiments with the Bratu equation in one, two and three dimensions, Comput Appl Math, 32, 2, 231-244 (2013) · Zbl 1272.65087 · doi:10.1007/s40314-013-0007-9
[16] Kumar, M.; Pandit, S., A composite numerical scheme for the numerical solution of coupled Burgers’ equation, Comput Phys Commun, 185, 3, 1304-1313 (2014) · Zbl 1360.35117 · doi:10.1016/j.cpc.2013.11.012
[17] Liew, Kj; Ramli, A.; Majid, Aa, Searching for the optimum value of the smoothing parameter for a radial basis function surface with feature area by using the bootstrap method, Comput Appl Math, 36, 4, 1717-1732 (2017) · Zbl 1383.65012 · doi:10.1007/s40314-016-0332-x
[18] Liu, Gr; Gu, Ty, An introduction to meshfree methods and their programming (2005), Berlin: Springer Press, Berlin
[19] Liu, J.; Huo, G., Numerical solutions of the space- and time-fractional coupled Burgers equations by generalized differential transform method, Appl Math Comput, 217, 7001-7008 (2011) · Zbl 1213.65131
[20] Mainardi, F.; Carpinteri, A.; Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, Fractals and fractional calculus in continuum mechanics, 291-348 (1997), New York: Springer, New York · Zbl 0917.73004
[21] Mardani, A.; Hooshmandasl, Mr; Heydari, Mh; Cattani, C., A meshless method for solving the time fractional advection-diffusion equation with variable coefficients, Comput Math Appl, 75, 1, 122-133 (2018) · Zbl 1418.65144 · doi:10.1016/j.camwa.2017.08.038
[22] Micchelli, Ca, Interpolation of scattered data: distance matrix and conditionally positive definite functions, Construct Approx, 2, 11-22 (1986) · Zbl 0625.41005 · doi:10.1007/BF01893414
[23] Mittal, Rc; Jiwari, R., Numerical simulation of reaction-diffusion systems by modified cubic B-spline differential quadrature method, Chaos Soliton Fractals, 92, 9-19 (2016) · Zbl 1372.65285 · doi:10.1016/j.chaos.2016.09.007
[24] Nee, J.; Duan, J., Limit set of trajectories of the coupled viscous Burgers’ equations, Appl Math Lett, 11, 1, 57-61 (1998) · Zbl 1076.35537 · doi:10.1016/S0893-9659(97)00133-X
[25] Podlubny, I., Fractional differential equations, 198 (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[26] Shivanian, E., A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms, Eng Anal Bound Elem, 54, 1-12 (2015) · Zbl 1403.65097 · doi:10.1016/j.enganabound.2015.01.004
[27] West, Bj; Bologna, M.; Grigolini, P., Physics of fractal operators (2003), New York: Springer, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.